1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
/***********************************************/
/**
* @file tidesEarth.cpp
*
* @brief Earth tides.
* Following the IERS conventions.
* @see Tides
*
* @author Torsten Mayer-Guerr
* @date 2002-12-13
*
*/
/***********************************************/
#include "base/import.h"
#include "base/sphericalHarmonics.h"
#include "base/doodson.h"
#include "config/config.h"
#include "files/fileEarthTide.h"
#include "classes/earthRotation/earthRotation.h"
#include "classes/tides/tidesEarth.h"
/***********************************************/
TidesEarth::TidesEarth(Config &config)
{
try
{
FileName earthTidesName;
readConfig(config, "inputfileEarthtide", earthTidesName, Config::MUSTSET, "{groopsDataDir}/tides/earthAnelastic2003.xml", "");
readConfig(config, "includePermanentTide", includePermanentTide, Config::DEFAULT, "0", "results in FALSE: zero tide, TRUE: tide free gravity field");
readConfig(config, "factor", factor, Config::DEFAULT, "1.0", "the result is multiplied by this factor, set -1 to subtract the field");
if(isCreateSchema(config)) return;
readFileEarthTide(earthTidesName, kReal, kImag, kPlus, doodson20, doodson21, doodson22,
ampIp20, ampOp20, ampIp21, ampOp21, amp22,
h2_0, h2_2, l2_0, l2_2, l21_1, l22_1, h21_imag, l21_imag, h22_imag, l22_imag, h3, l3,
deformationArg21, deformationArg20,
dR21_ip, dR21_op, dR20_ip, dR20_op, dT21_ip, dT21_op, dT20_ip, dT20_op);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/************************************************/
// Geopotential (IERS-Convetions 1996, S.40) Step 1
// ------------------------------------------------
void TidesEarth::earthCoefficients1(Double GM_third, const Vector3d &third, Matrix &cnm, Matrix &snm) const
{
// Kugelflaechenfunktionen berechnen
Matrix Cnm, Snm;
SphericalHarmonics::CnmSnm(1./R_Earth * third, 3, Cnm, Snm);
Double factor = GM_third/GM_Earth;
// Formel (1)
for(UInt n=2; n<=3; n++)
for(UInt m=0; m<=n; m++)
{
cnm(n,m) += factor/(2.*n+1.) * (kReal(n,m) * Cnm(n,m) + kImag(n,m) * Snm(n,m));
snm(n,m) += factor/(2.*n+1.) * (kReal(n,m) * Snm(n,m) - kImag(n,m) * Cnm(n,m));
}
// Formel (4)
for(UInt m=0; m<=2; m++)
{
cnm(4,m) += kPlus(2,m)/5. * factor * Cnm(2,m);
snm(4,m) += kPlus(2,m)/5. * factor * Snm(2,m);
}
}
/***********************************************/
// Geopotential (IERS-Convetions 1996, S.40) Step 2
// ------------------------------------------------
void TidesEarth::earthCoefficients2(const Time &time, Matrix &cnm, Matrix &snm) const
{
Vector d = Doodson::arguments(time);
// Korrektion fuer c20
Vector thetaf = doodson20 * d;
for(UInt i=0; i<thetaf.rows(); i++)
cnm(2,0) += 1e-12 * (ampIp20(i) * cos(thetaf(i)) - ampOp20(i) * sin(thetaf(i)));
// Korrektion fur c21 und s21
thetaf = doodson21 * d;
for(UInt i=0; i<thetaf.rows(); i++)
{
cnm(2,1) += 1e-12 * (ampIp21(i) * sin(thetaf(i)) + ampOp21(i) * cos(thetaf(i)));
snm(2,1) += 1e-12 * (ampIp21(i) * cos(thetaf(i)) - ampOp21(i) * sin(thetaf(i)));
}
// Korrektion fur c22 und s22
thetaf = doodson22 * d;
for(UInt i=0; i<thetaf.rows(); i++)
{
cnm(2,2) += 1e-12 * amp22(i) * cos(thetaf(i));
snm(2,2) += -1e-12 * amp22(i) * sin(thetaf(i));
}
}
/***********************************************/
SphericalHarmonics TidesEarth::sphericalHarmonics(const Time &time, const Rotary3d &rotEarth, EarthRotationPtr /*rotation*/, EphemeridesPtr ephemerides, UInt maxDegree, UInt minDegree, Double GM, Double R) const
{
try
{
if(!ephemerides)
throw(Exception("No ephemerides given"));
Matrix cnm(5, Matrix::TRIANGULAR, Matrix::LOWER);
Matrix snm(5, Matrix::TRIANGULAR, Matrix::LOWER);
const Vector3d moon = rotEarth.rotate(ephemerides->position(time, Ephemerides::MOON));
const Vector3d sun = rotEarth.rotate(ephemerides->position(time, Ephemerides::SUN));
earthCoefficients1(GM_Sun, sun, cnm, snm);
earthCoefficients1(GM_Moon, moon, cnm, snm);
earthCoefficients2(time, cnm, snm);
if(!includePermanentTide)
cnm(2,0) -= 4.4228e-8*(-0.31460)*kReal(2,0); // Abzug Permanentgezeiten
return SphericalHarmonics(GM_Earth, R_Earth, factor*cnm, factor*snm).get(maxDegree, minDegree, GM, R);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
/***********************************************/
Vector3d TidesEarth::deformation(const Time &time, const Vector3d &point, const Rotary3d &rotEarth, EarthRotationPtr /*rotation*/, EphemeridesPtr ephemerides,
Double /*gravity*/, const Vector &/*hn*/, const Vector &/*ln*/) const
{
try
{
if(!ephemerides)
throw(Exception("No ephemerides given"));
Vector3d displacement; // the result
// local coordinate system
Double lambda = point.lambda();
Double phi = point.phi();
Vector3d up = normalize(point);
Vector3d east = normalize(Vector3d(-up.y(), up.x(), 0.0));
Vector3d north = crossProduct(up, east);
const Vector3d moon = rotEarth.rotate(ephemerides->position(time, Ephemerides::MOON));
const Vector3d sun = rotEarth.rotate(ephemerides->position(time, Ephemerides::SUN));
// in-phase
// --------
Double h2 = h2_0 + h2_2*0.5*(3.*pow(sin(phi),2)-1.);
Double l2 = l2_0 + l2_2*0.5*(3.*pow(sin(phi),2)-1.);
displacement += deformationInPhase(GM_Sun, sun, point, h2, l2, h3, l3);
displacement += deformationInPhase(GM_Moon, moon, point, h2, l2, h3, l3);
// out-phase
// ---------
Double dUp = 0;
Double dEast = 0;
Double dNorth = 0;
deformationOutPhase(GM_Sun, sun, lambda, phi, dUp, dEast, dNorth);
deformationOutPhase(GM_Moon, moon, lambda, phi, dUp, dEast, dNorth);
// frequency dependent correction
// ------------------------------
Vector d = Doodson::arguments(time);
// diurnal band, equation (16)
Vector thetaf = deformationArg21 * d;
Double dUp21 = 0;
Double dEast21 = 0;
Double dNorth21 = 0;
for(UInt i=0; i<thetaf.rows(); i++)
{
Double cosf = cos(thetaf(i)+lambda);
Double sinf = sin(thetaf(i)+lambda);
dUp21 += dR21_ip(i)*sinf + dR21_op(i)*cosf;
dEast21 += dT21_ip(i)*cosf - dT21_op(i)*sinf;
dNorth21 += dT21_ip(i)*sinf + dT21_op(i)*cosf;
}
dUp21 *= sin(2*phi);
dEast21 *= sin(phi);
dNorth21 *= cos(2*phi);
// long periodic band, equation (17)
thetaf = deformationArg20 * d;
Double dUp20 = 0;
Double dNorth20 = 0;
for(UInt i=0; i<thetaf.rows(); i++)
{
Double cosf = cos(thetaf(i));
Double sinf = sin(thetaf(i));
dUp20 += dR20_ip(i)*cosf + dR20_op(i)*sinf;
dNorth20 += dT20_ip(i)*cosf + dT20_op(i)*sinf;
}
dUp20 *= 1.5*pow(sin(phi),2)-0.5;
dNorth20 *= sin(2*phi);
displacement += (dUp+dUp21+dUp20)*up + (dEast+dEast21)*east + (dNorth+dNorth21+dNorth20)*north;
return this->factor*displacement;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void TidesEarth::deformation(const std::vector<Time> &time, const std::vector<Vector3d> &point, const std::vector<Rotary3d> &rotEarth,
EarthRotationPtr rotation, EphemeridesPtr ephemerides, const std::vector<Double> &gravity, const Vector &hn, const Vector &ln,
std::vector<std::vector<Vector3d>> &disp) const
{
try
{
for(UInt i=0; i<time.size(); i++)
for(UInt k=0; k<point.size(); k++)
disp.at(k).at(i) += deformation(time.at(i), point.at(k), rotEarth.at(i), rotation, ephemerides, gravity.at(k), hn, ln);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/************************************************/
Vector3d TidesEarth::deformationInPhase(Double GM_third, const Vector3d &third, const Vector3d &point, Double h2, Double l2, Double h3, Double l3) const
{
Vector3d er = normalize(point);
Vector3d eR = third;
Double R = eR.normalize();
Double rR = inner(eR,er);
Double factor = GM_third/GM_Earth * R_Earth * pow(R_Earth/R,3);
// displacement due to degree 2 tides, (eq.9)
Vector3d displacement = factor * (h2*(1.5*rR*rR-0.5) * er + 3*l2*rR*(eR - rR*er));
// displacement due to degree 3 tides, (eq.10)
factor *= R_Earth/R;
displacement += factor * (h3*(2.5*pow(rR,3)-1.5*rR) * er + l3*(7.5*rR*rR-1.5)*(eR - rR*er));
return displacement;
}
/************************************************/
void TidesEarth::deformationOutPhase(Double GM_third, const Vector3d &third, Double lambda, Double phi, Double &dUp, Double &dEast, Double &dNorth) const
{
Matrix Pnm = SphericalHarmonics::Pnm(third.theta(), 1.0, 2);
Double phij = third.phi();
Double dlambda = lambda-third.lambda();
Double factor = GM_third/GM_Earth * R_Earth * pow(R_Earth/third.r(),3);
// equation (12) and (13)
dNorth += -l21_1 * sin(phi) * sin(phi) * factor * Pnm(2,1)*sqrt(3./5.) * cos(dlambda)
- 0.5*l22_1 * sin(phi) * cos(phi) * factor * Pnm(2,2)*sqrt(12./5.) * cos(2*dlambda);
dEast += l21_1 * sin(phi) * cos(2*phi)* factor * Pnm(2,1)*sqrt(3./5.) * sin(dlambda)
- 0.5*l22_1 * sin(phi) * cos(phi) * factor * Pnm(2,2)*sqrt(12./5.) * sin(phi) * sin(2*dlambda);
// equation (14a) and (15a)
dUp += -0.75 * h21_imag * factor * sin(2*phij)*sin(2*phi) * sin(dlambda)
+ -0.75 * h22_imag * factor * pow(cos(phij)*cos(phi),2) * sin(2*dlambda);
// equation (14b) and (15b)
dNorth += -1.5 * l21_imag * factor * sin(2*phij)*cos(2*phi) * sin(dlambda)
+ 0.75 * l22_imag * factor * pow(cos(phij),2)*sin(2*phi) * sin(2*dlambda);
dEast += -1.5 * l21_imag * factor * sin(2*phij)*sin(phi) * cos(dlambda)
+ -0.75 * l22_imag * factor * pow(cos(phij),2)*2*cos(phi) * cos(2*dlambda);
}
/***********************************************/
|