1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
|
/***********************************************/
/**
* @file normalsShortTimeStaticLongTime.cpp
*
* @brief Normal equations with short and long time gravity variations.
*
* @author Torsten Mayer-Guerr
* @date 2020-11-29
*
*/
/***********************************************/
#include "base/import.h"
#include "parallel/matrixDistributed.h"
#include "classes/observation/observation.h"
#include "classes/parametrizationTemporal/parametrizationTemporal.h"
#include "classes/parameterSelector/parameterSelector.h"
#include "misc/varianceComponentEstimation.h"
#include "normalsShortTimeStaticLongTime.h"
/***********************************************/
void NormalsShortTimeStaticLongTime::init(ObservationPtr observation, const std::vector<Time> ×Interval,
UInt defaultBlockSize, Parallel::CommunicatorPtr comm, Bool sortOtherParametersBeforeGravityParameters,
UInt countShortTimeParameters, ParameterSelectorPtr parameterShortTime,
ParametrizationTemporalPtr temporal, ParameterSelectorPtr parameterTemporal)
{
try
{
// parameter names
// ---------------
std::vector<ParameterName> paraNameAll;
observation->parameterName(paraNameAll);
// examine intervals
// -----------------
std::vector<UInt> minInterval(paraNameAll.size(), timesInterval.size());
std::vector<UInt> maxInterval(paraNameAll.size(), 0);
std::vector<std::vector<UInt>> indexDesign(timesInterval.size()-1, std::vector<UInt>(paraNameAll.size(), NULLINDEX));
for(UInt idInterval=0; idInterval+1<timesInterval.size(); idInterval++)
{
std::vector<ParameterName> paraNameInterval;
observation->setInterval(timesInterval.at(idInterval), timesInterval.at(idInterval+1));
observation->parameterName(paraNameInterval);
auto iter = paraNameAll.begin();
for(UInt k=0; k<paraNameInterval.size(); k++)
{
iter = std::find(iter, paraNameAll.end(), paraNameInterval.at(k));
const UInt i = std::distance(paraNameAll.begin(), iter);
indexDesign.at(idInterval).at(i) = k;
minInterval.at(i) = std::min(minInterval.at(i), idInterval);
maxInterval.at(i) = std::max(maxInterval.at(i), idInterval);
}
}
observation->setInterval(timesInterval.front(), timesInterval.back());
// --- lambda -------------------
auto testSelectedParameters = [&](const std::string &text, std::vector<UInt>::const_iterator begin, std::vector<UInt>::const_iterator end)
{
if(begin == end)
throw(Exception(text+": no parameters selected"));
if(!std::is_sorted(begin, end) || ((*(end-1)-*begin+1) != static_cast<UInt>(std::distance(begin, end))))
throw(Exception(text+": selected parameters must be in consecutive order"));
if(!std::all_of(begin, end, [&](UInt i) {return (minInterval.at(i) == minInterval.at(*begin)) && (maxInterval.at(i) == maxInterval.at(*begin));}))
throw(Exception(text+": all selected parameters must be in the same time interval"));
};
// ------------------------------
// add short time gravity parameters
// ---------------------------------
if(countShortTimeParameters && parameterShortTime)
{
std::vector<UInt> index = parameterShortTime->indexVector(paraNameAll);
if(index.size() % countShortTimeParameters)
throw(Exception("Number of selected short time parameters disagree with dimension of AR model"));
// is only one static block? -> copy static parameters for each interval
if(index.size() == countShortTimeParameters)
{
testSelectedParameters("short time variations", index.begin(), index.end());
paraNameAll.reserve(paraNameAll.size() + index.size() * (timesInterval.size()-1));
minInterval.reserve(paraNameAll.size() + index.size() * (timesInterval.size()-1));
maxInterval.reserve(paraNameAll.size() + index.size() * (timesInterval.size()-1));
for(UInt idInterval=0; idInterval+1<timesInterval.size(); idInterval++)
{
blockIndexShortTime.push_back(paraNameAll.size());
indexDesign.at(idInterval).reserve(paraNameAll.size() + index.size() * (timesInterval.size()-1));
const ParameterName paraNameInterval("", "", "", timesInterval.at(idInterval), timesInterval.at(idInterval+1));
for(UInt i=0; i<index.size(); i++)
{
paraNameAll.push_back(paraNameAll.at(index.at(i)));
paraNameAll.back().combine(paraNameInterval);
for(UInt idInterval2=0; idInterval2+1<timesInterval.size(); idInterval2++)
indexDesign.at(idInterval2).push_back((idInterval == idInterval2) ? indexDesign.at(idInterval).at(index.at(i)) : NULLINDEX);
minInterval.push_back(idInterval);
maxInterval.push_back(idInterval);
}
}
}
else
for(UInt i=0; i<index.size(); i+=countShortTimeParameters)
{
testSelectedParameters("short time variations", index.begin()+i, index.begin()+(i+countShortTimeParameters));
blockIndexShortTime.push_back(index.at(i));
}
}
// add long time gravity parameters
// --------------------------------
UInt countTemporalParameters = 0;
if(temporal && parameterTemporal)
{
std::vector<UInt> index = parameterTemporal->indexVector(paraNameAll);
testSelectedParameters("long time variations", index.begin(), index.end());
countTemporalParameters = index.size();
blockIndexTemporal = {index.at(0)}; // static
for(UInt k=0; k<temporal->parameterCount(); k++)
blockIndexTemporal.push_back(paraNameAll.size()+k*index.size());
minInterval.resize(paraNameAll.size()+index.size()*temporal->parameterCount(), 0);
maxInterval.resize(paraNameAll.size()+index.size()*temporal->parameterCount(), timesInterval.size()-2);
for(UInt idInterval=0; idInterval+1<timesInterval.size(); idInterval++)
indexDesign.at(idInterval).resize(paraNameAll.size()+index.size()*temporal->parameterCount(), NULLINDEX);
std::vector<ParameterName> parameterNameBase(index.size());
for(UInt i=0; i<index.size(); i++)
parameterNameBase.at(i) = paraNameAll.at(index.at(i));
temporal->parameterName(parameterNameBase, paraNameAll);
factorTemporal.resize(1+temporal->parameterCount(), std::vector<Double>(timesInterval.size()-1)); // static + temporal
for(UInt idInterval=0; idInterval<timesInterval.size()-1; idInterval++)
{
const Vector f = temporal->factors(0.5*(timesInterval.at(idInterval)+timesInterval.at(idInterval+1)));
factorTemporal.at(0).at(idInterval) = 1.; // static
for(UInt k=0; k<f.rows(); k++)
factorTemporal.at(1+k).at(idInterval) = f(k);
}
}
// sort parameters: interval parameters first
// ------------------------------------------
std::vector<UInt> sortIndex(paraNameAll.size());
std::iota(sortIndex.begin(), sortIndex.end(), 0);
blockIndexStatic = std::distance(sortIndex.begin(), std::find_if(sortIndex.begin(), sortIndex.end(), [&](UInt i)
{return (minInterval.at(i) == 0) && (maxInterval.at(i) == timesInterval.size()-2);}));
std::stable_sort(sortIndex.begin(), sortIndex.end(), [&] (UInt i, UInt k)
{
Bool firstIsStatic = minInterval.at(i) == 0 && maxInterval.at(i) == timesInterval.size() - 2; // first parameter is static
Bool secondIsStatic = minInterval.at(k) == 0 && maxInterval.at(k) == timesInterval.size() - 2; // other parameter is static
if((firstIsStatic && secondIsStatic) && sortOtherParametersBeforeGravityParameters)
{
if(((observation->gravityParameterCount() <= i) && (i < observation->parameterCount())) && // is state parameter?
!((observation->gravityParameterCount() <= k) && (k < observation->parameterCount()))) // is not state parameter?
return TRUE;
}
else if(firstIsStatic)
return FALSE;
else if(secondIsStatic)
return TRUE;
if(maxInterval.at(i) != maxInterval.at(k)) return (maxInterval.at(i) < maxInterval.at(k));
if(minInterval.at(i) != minInterval.at(k)) return (minInterval.at(i) < minInterval.at(k));
return FALSE;
});
parameterNames.clear(); parameterNames.reserve(paraNameAll.size());
for(UInt i=0; i<sortIndex.size(); i++)
parameterNames.push_back(paraNameAll.at(sortIndex.at(i)));
// divide into blocks
// ------------------
std::vector<UInt> blockIndex(1, 0);
while(blockIndex.back() < paraNameAll.size())
{
// ---------------------
auto mustSplit = [&](UInt i, UInt k)
{
for(UInt idInterval=0; idInterval+1<timesInterval.size(); idInterval++)
if((indexDesign.at(idInterval).at(i) != NULLINDEX) || (indexDesign.at(idInterval).at(k) != NULLINDEX))
if((indexDesign.at(idInterval).at(i) == NULLINDEX) || (indexDesign.at(idInterval).at(k) == NULLINDEX) || (indexDesign.at(idInterval).at(i) != indexDesign.at(idInterval).at(k)-1))
return TRUE;
if(std::find_if(blockIndexShortTime.begin(), blockIndexShortTime.end(), [&](UInt idx) {return (idx == k) || (idx+countShortTimeParameters-1 == i);}) != blockIndexShortTime.end())
return TRUE;
if(std::find_if(blockIndexTemporal.begin(), blockIndexTemporal.end(), [&](UInt idx) {return (idx == k) || (idx+countTemporalParameters-1 == i);}) != blockIndexTemporal.end())
return TRUE;
return FALSE;
};
// ---------------------
blockIndex.push_back(blockIndex.back()+1);
while((blockIndex.back() < paraNameAll.size()) && !mustSplit(sortIndex.at(blockIndex.back()-1), sortIndex.at(blockIndex.back())))
blockIndex.back()++;
}
// divide blocks according to defaultBlockSize (if not a high frequency block)
if(defaultBlockSize > 0)
for(UInt i=0; i<blockIndex.size()-1; i++)
if((blockIndex.at(i+1)-blockIndex.at(i) > defaultBlockSize*3/2) &&
(std::find(blockIndexShortTime.begin(), blockIndexShortTime.end(), sortIndex.at(blockIndex.at(i))) == blockIndexShortTime.end()))
blockIndex.insert(blockIndex.begin()+(i+1), blockIndex.at(i)+defaultBlockSize);
// Init normal equations
// ---------------------
initEmpty(blockIndex, comm);
n = Matrix(parameterCount(), observation->rightSideCount());
lPl = Vector(observation->rightSideCount());
obsCount = 0;
if(countTemporalParameters)
{
normalsTemporal.resize(timesInterval.size()-1);
for(UInt idInterval=0; idInterval<timesInterval.size()-1; idInterval++)
normalsTemporal.at(idInterval).initEmpty(blockIndex, comm);
nTemporal.clear();
nTemporal.resize(timesInterval.size()-1, Matrix(parameterCount(), observation->rightSideCount()));
}
// compute correct block indices
// -----------------------------
blockIndexStatic = index2block(std::distance(sortIndex.begin(), std::find(sortIndex.begin(), sortIndex.end(), blockIndexStatic)));
for(UInt &idx : blockIndexShortTime)
idx = index2block(std::distance(sortIndex.begin(), std::find(sortIndex.begin(), sortIndex.end(), idx)));
for(UInt &idx : blockIndexTemporal)
idx = index2block(std::distance(sortIndex.begin(), std::find(sortIndex.begin(), sortIndex.end(), idx)));
blockCountTemporal = 0;
if(blockIndexTemporal.size())
blockCountTemporal = index2block(blockIndex.at(blockIndexTemporal.at(0))+countTemporalParameters) - blockIndexTemporal.at(0);
// index for each block in design matrix
// -------------------------------------
indexN.clear(); indexN.resize(timesInterval.size()-1);
indexA.clear(); indexA.resize(timesInterval.size()-1);
for(UInt idBlock=0; idBlock<blockIndex.size()-1; idBlock++)
{
const UInt idx = blockIndex.at(idBlock);
for(UInt idInterval=0; idInterval+1<timesInterval.size(); idInterval++)
if(indexDesign.at(idInterval).at(sortIndex.at(idx)) != NULLINDEX)
{
indexN.at(idInterval).push_back(idBlock);
indexA.at(idInterval).push_back(indexDesign.at(idInterval).at(sortIndex.at(idx)));
}
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void NormalsShortTimeStaticLongTime::setBlocks(const std::vector<UInt> &arcsInterval)
{
try
{
for(UInt idInterval=0; idInterval+1<arcsInterval.size(); idInterval++)
if(arcsInterval.at(idInterval+1)-arcsInterval.at(idInterval) > 0)
for(UInt i=0; i<indexN.at(idInterval).size(); i++)
for(UInt k=i; k<indexN.at(idInterval).size(); k++)
{
const Bool isTemporal1 = blockCountTemporal && (blockIndexTemporal.at(0) <= indexN.at(idInterval).at(i)) && (indexN.at(idInterval).at(i) < blockIndexTemporal.at(0)+blockCountTemporal);
const Bool isTemporal2 = blockCountTemporal && (blockIndexTemporal.at(0) <= indexN.at(idInterval).at(k)) && (indexN.at(idInterval).at(k) < blockIndexTemporal.at(0)+blockCountTemporal);
if(isTemporal1 || isTemporal2)
{
normalsTemporal.at(idInterval).setBlock(indexN.at(idInterval).at(i), indexN.at(idInterval).at(k));
normalsTemporal.at(idInterval).N(indexN.at(idInterval).at(i), indexN.at(idInterval).at(k)) = Matrix();
}
else
{
setBlock(indexN.at(idInterval).at(i), indexN.at(idInterval).at(k));
N(indexN.at(idInterval).at(i), indexN.at(idInterval).at(k)) = Matrix();
}
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void NormalsShortTimeStaticLongTime::setNull()
{
try
{
MatrixDistributed::setNull();
n.setNull();
lPl.setNull();
obsCount = 0;
for(UInt idInterval=0; idInterval+1<normalsTemporal.size(); idInterval++)
normalsTemporal.at(idInterval).setNull();
for(UInt idInterval=0; idInterval+1<nTemporal.size(); idInterval++)
nTemporal.at(idInterval).setNull();
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void NormalsShortTimeStaticLongTime::accumulate(UInt idInterval, Matrix &l, Matrix &A, Matrix &B)
{
try
{
// if equations are orthogonaly transformed
// additional residuals are appended to l
Matrix l2;
if(l.rows() > A.rows())
{
l2 = l.row(A.rows(), l.rows()-A.rows());
l = l.row(0, A.rows());
}
// eliminate arc dependent parameters
// ----------------------------------
Vector tau;
if(B.size())
{
tau = QR_decomposition(B);
QTransMult(B, tau, l); // transform observations: l:= Q'l
QTransMult(B, tau, A); // transform design matrix A:=Q'A
}
// use only nullspace of design matrix B
MatrixSlice A_bar( A.row(B.columns(), A.rows()-B.columns()) );
MatrixSlice l_bar( l.row(B.columns(), l.rows()-B.columns()) );
// build normals
// -------------
obsCount += l_bar.rows();
for(UInt i=0; i<l_bar.columns(); i++)
lPl(i) += quadsum(l_bar.column(i)) + quadsum(l2.column(i));
for(UInt i=0; i<indexA.at(idInterval).size(); i++)
{
const UInt idxN1 = indexN.at(idInterval).at(i);
const UInt idxA1 = indexA.at(idInterval).at(i);
const Bool isTemporal1 = blockCountTemporal && (blockIndexTemporal.at(0) <= idxN1) && (idxN1 < blockIndexTemporal.at(0)+blockCountTemporal);
// right hand sides
Matrix &n2 = (isTemporal1) ? nTemporal.at(idInterval) : n;
matMult(1., A_bar.column(idxA1, blockSize(idxN1)).trans(), l_bar, n2.row(blockIndex(idxN1), blockSize(idxN1)));
// normal matrix diagonal block
Matrix &N2 = (isTemporal1) ? normalsTemporal.at(idInterval).N(idxN1, idxN1) : N(idxN1, idxN1);
if(N2.size() == 0)
N2 = Matrix(blockSize(idxN1), Matrix::SYMMETRIC);
rankKUpdate(1.0, A_bar.column(idxA1, blockSize(idxN1)), N2);
// normal matrix, other blocks
for(UInt k=i+1; k<indexA.at(idInterval).size(); k++)
{
const UInt idxN2 = indexN.at(idInterval).at(k);
const UInt idxA2 = indexA.at(idInterval).at(k);
const Bool isTemporal2 = blockCountTemporal && (blockIndexTemporal.at(0) <= idxN2) && (idxN2 < blockIndexTemporal.at(0)+blockCountTemporal);
Matrix &N2 = (isTemporal1 || isTemporal2) ? normalsTemporal.at(idInterval).N(idxN1, idxN2) : N(idxN1, idxN2);
if(N2.size() == 0)
N2 = Matrix(blockSize(idxN1), blockSize(idxN2));
matMult(1.0, A_bar.column(idxA1, blockSize(idxN1)).trans(), A_bar.column(idxA2, blockSize(idxN2)), N2);
}
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void NormalsShortTimeStaticLongTime::reduceSum(Bool timing)
{
try
{
Parallel::reduceSum(n, 0, communicator());
Parallel::reduceSum(obsCount, 0, communicator());
Parallel::reduceSum(lPl, 0, communicator());
MatrixDistributed::reduceSum(timing);
if(blockCountTemporal == 0)
return;
if(timing) logStatus<<"setup long time normal equations"<<Log::endl;
// right hand side
for(UInt idInterval=0; idInterval<nTemporal.size(); idInterval++)
Parallel::reduceSum(nTemporal.at(idInterval), 0, communicator());
if(Parallel::isMaster(communicator()))
for(UInt blockRow=0; blockRow<blockCountTemporal; blockRow++)
for(UInt k=0; k<blockIndexTemporal.size(); k++)
for(UInt idInterval=0; idInterval<nTemporal.size(); idInterval++)
axpy(factorTemporal.at(k).at(idInterval),
nTemporal.at(idInterval).row(blockIndex(blockRow+blockIndexTemporal.at(0)), blockSize(blockRow+blockIndexTemporal.at(k))),
n.row(blockIndex(blockRow+blockIndexTemporal.at(k)), blockSize(blockRow+blockIndexTemporal.at(k))));
for(UInt idInterval=0; idInterval<normalsTemporal.size(); idInterval++)
normalsTemporal.at(idInterval).reduceSum(FALSE);
// --- lambda -------------------
auto send = [&](Matrix &N, UInt rankSource, UInt rankDest)
{
if(rankSource == rankDest)
return;
if(Parallel::myRank(communicator()) == rankSource)
Parallel::send(N, rankDest, communicator());
if(Parallel::myRank(communicator()) == rankDest)
Parallel::receive(N, rankSource, communicator());
};
// ------------------------------
for(UInt blockRow=0; blockRow<blockIndexTemporal.at(1); blockRow++)
for(UInt blockCol=blockRow; blockCol<blockIndexTemporal.at(1); blockCol++)
{
// --- lambda -------------------
auto reduceTemporal = [&](const std::vector<Double> &factor, Bool trans, UInt blocki, UInt blockk)
{
setBlock(blocki, blockk);
Matrix N2;
if(isMyRank(blockRow, blockCol))
{
N2 = Matrix(blockSize(blockRow), blockSize(blockCol));
for(UInt idInterval=0; idInterval<normalsTemporal.size(); idInterval++)
if(normalsTemporal.at(idInterval).isMyRank(blockRow, blockCol))
axpy(factor.at(idInterval), normalsTemporal.at(idInterval).N(blockRow, blockCol), N2);
}
send(N2, rank(blockRow, blockCol), rank(blocki, blockk));
if(isMyRank(blocki, blockk))
{
if(blockRow == blockCol)
N2.setType(Matrix::SYMMETRIC);
if((blockRow == blockCol) && (blocki != blockk))
{
fillSymmetric(N2);
N2.setType(Matrix::GENERAL);
}
N(blocki, blockk) = (trans) ? N2.trans() : N2;
}
};
// ------------------------------
// upper blocks
// ------------
if((blockRow < blockIndexTemporal.at(0)) &&
(blockIndexTemporal.at(0) <= blockCol) && (blockCol < blockIndexTemporal.at(0)+blockCountTemporal))
{
for(UInt k=0; k<blockIndexTemporal.size(); k++)
reduceTemporal(factorTemporal.at(k), FALSE, blockRow, blockCol-blockIndexTemporal.at(0)+blockIndexTemporal.at(k));
}
// temporal blocks
// ---------------
if((blockIndexTemporal.at(0) <= blockRow) && (blockRow < blockIndexTemporal.at(0)+blockCountTemporal) &&
(blockIndexTemporal.at(0) <= blockCol) && (blockCol < blockIndexTemporal.at(0)+blockCountTemporal))
{
for(UInt k=0; k<blockIndexTemporal.size(); k++)
for(UInt l=k; l<blockIndexTemporal.size(); l++)
{
std::vector<Double> factor(factorTemporal.at(0).size());
std::transform(factorTemporal.at(k).begin(), factorTemporal.at(k).end(), factorTemporal.at(l).begin(), factor.begin(), std::multiplies<Double>());
reduceTemporal(factor, FALSE,
blockRow-blockIndexTemporal.at(0)+blockIndexTemporal.at(k),
blockCol-blockIndexTemporal.at(0)+blockIndexTemporal.at(l));
}
}
// right side blocks
// -----------------
if((blockIndexTemporal.at(0) <= blockRow) && (blockRow < blockIndexTemporal.at(0)+blockCountTemporal) &&
(blockIndexTemporal.at(0)+blockCountTemporal <= blockCol))
{
reduceTemporal(factorTemporal.at(0), FALSE, blockRow, blockCol);
for(UInt k=1; k<blockIndexTemporal.size(); k++)
reduceTemporal(factorTemporal.at(k), TRUE, blockCol, blockRow-blockIndexTemporal.at(0)+blockIndexTemporal.at(k));
}
// free memory
for(UInt idInterval=0; idInterval<normalsTemporal.size(); idInterval++)
if(normalsTemporal.at(idInterval).isBlockUsed(blockRow, blockCol))
normalsTemporal.at(idInterval).N(blockRow, blockCol) = Matrix();
}
// fill symmetric
// --------------
for(UInt k=0; k<blockIndexTemporal.size(); k++)
for(UInt l=k+1; l<blockIndexTemporal.size(); l++)
for(UInt blockRow=0; blockRow<blockCountTemporal; blockRow++)
for(UInt blockCol=blockRow+1; blockCol<blockCountTemporal; blockCol++)
{
const UInt rowSource = blockIndexTemporal.at(k)+blockRow;
const UInt colSource = blockIndexTemporal.at(l)+blockCol;
const UInt rowDest = blockIndexTemporal.at(k)+blockCol;
const UInt colDest = blockIndexTemporal.at(l)+blockRow;
Matrix N2 = N(rowSource, colSource).trans();
setBlock(rowDest, colDest);
send(N2, rank(rowSource, colSource), rank(rowDest, colDest));
if(isMyRank(rowDest, colDest))
N(rowDest, colDest) = N2;
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void NormalsShortTimeStaticLongTime::addShortTimeNormals(Double sigma2, const std::vector<std::vector<std::vector<Matrix>>> &normalsShortTime)
{
try
{
if(!blockIndexShortTime.size())
return;
if(Parallel::isMaster(communicator()))
obsCount += normalsShortTime.at(0).at(0).at(0).rows() * blockIndexShortTime.size();
for(UInt id=0; id<blockIndexShortTime.size(); id++)
{
const UInt idx = std::min(id, normalsShortTime.size()-1);
for(UInt i=0; i<normalsShortTime.at(idx).size(); i++)
for(UInt k=i; k<normalsShortTime.at(idx).at(i).size(); k++)
{
setBlock(blockIndexShortTime.at(id+i-idx), blockIndexShortTime.at(id+k-idx));
if(isMyRank(blockIndexShortTime.at(id+i-idx), blockIndexShortTime.at(id+k-idx)))
axpy(1./sigma2, normalsShortTime.at(idx).at(i).at(k), N(blockIndexShortTime.at(id+i-idx), blockIndexShortTime.at(id+k-idx)));
}
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void NormalsShortTimeStaticLongTime::regularizeUnusedParameters(UInt countBlock)
{
try
{
UInt additionalObservations = 0;
for(UInt i=0; i<countBlock; i++)
{
setBlock(i, i);
if(isMyRank(i,i))
{
Matrix &N2 = N(i,i);
for(UInt k=0; k<N2.rows(); k++)
if(N2(k,k) == 0)
{
N2(k,k) = 1.;
additionalObservations++;
logWarning<<" parameters is not used: "<<parameterNames.at(blockIndex(i)+k).str()<<Log::endl;
}
}
}
Parallel::reduceSum(additionalObservations, 0, communicator());
if(Parallel::isMaster(communicator()))
obsCount += additionalObservations;
Parallel::barrier(communicator());
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Double NormalsShortTimeStaticLongTime::solve(Matrix &x, Matrix &Wz)
{
try
{
regularizeUnusedParameters(blockCount());
x = MatrixDistributed::solve(n, TRUE/*timing*/);
Parallel::broadCast(x, 0, communicator());
// N contains now the cholesky decomposition
Wz = Vce::monteCarlo(parameterCount(), 100); // monte carlo vector for VCE
triangularSolve(Wz);
Parallel::broadCast(Wz, 0, communicator());
return std::sqrt((lPl(0)-inner(x.column(0), n.column(0)))/(obsCount-parameterCount()));
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Vector NormalsShortTimeStaticLongTime::parameterStandardDeviation()
{
try
{
cholesky2SparseInverse();
Vector diagonal = Vector(dimension());
for(UInt i=0; i<blockCount(); i++)
if(isMyRank(i,i))
{
Matrix &N2 = N(i,i);
for(UInt z=0; z<N2.rows(); z++)
diagonal(blockIndex(i)+z) = std::sqrt(N2(z,z));
}
Parallel::reduceSum(diagonal, 0, communicator());
return diagonal;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Double NormalsShortTimeStaticLongTime::estimateShortTimeNormalsVariance(Double sigma2, const std::vector<std::vector<std::vector<Matrix>>> &normalsShortTime,
const_MatrixSliceRef x, const_MatrixSliceRef Wz) const
{
try
{
const UInt count = blockSize(blockIndexShortTime.at(0));
Matrix Nx(x.rows(), x.columns());
Matrix NWz(Wz.rows(), Wz.columns());
for(UInt id=0; id<blockIndexShortTime.size(); id++)
{
const UInt idx = std::min(id, normalsShortTime.size()-1);
for(UInt i=0; i<normalsShortTime.at(idx).size(); i++)
for(UInt k=i; k<normalsShortTime.at(idx).at(i).size(); k++)
if(isMyRank(blockIndexShortTime.at(id+i-idx), blockIndexShortTime.at(id+k-idx)))
{
const UInt idxi = blockIndex(blockIndexShortTime.at(id+i-idx));
const UInt idxk = blockIndex(blockIndexShortTime.at(id+k-idx));
matMult(1., normalsShortTime.at(idx).at(i).at(k), x.row(idxk, count), Nx.row(idxi, count));
matMult(1., normalsShortTime.at(idx).at(i).at(k), Wz.row(idxk, count), NWz.row(idxi, count));
if(k > i) // extend symmetric
{
matMult(1., normalsShortTime.at(idx).at(i).at(k).trans(), x.row(idxi, count), Nx.row(idxk, count));
matMult(1., normalsShortTime.at(idx).at(i).at(k).trans(), Wz.row(idxi, count), NWz.row(idxk, count));
}
}
} // for(id)
Parallel::reduceSum(Nx, 0, communicator());
Parallel::reduceSum(NWz, 0, communicator());
const Double ePe = inner(x.column(0), Nx.column(0));
const Double r = count*blockIndexShortTime.size() - 1./sigma2*inner(Wz, NWz);
Double s2 = ePe/r;
Parallel::broadCast(s2, 0, communicator());
return s2;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void NormalsShortTimeStaticLongTime::designMatMult(UInt idInterval, Double factor, const_MatrixSliceRef A, const_MatrixSliceRef x, MatrixSliceRef Ax)
{
try
{
for(UInt i=0; i<indexA.at(idInterval).size(); i++)
{
const UInt idxN = indexN.at(idInterval).at(i);
const UInt idxA = indexA.at(idInterval).at(i);
matMult(factor, A.column(idxA, blockSize(idxN)), x.row(blockIndex(idxN), blockSize(idxN)), Ax);
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|