1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
/***********************************************/
/**
* @file varianceComponentEstimation.cpp
*
* @brief Variance Component Estimation (VCE).
*
* @author Torsten Mayer-Guerr
* @date 2011-10-17
*
*/
/***********************************************/
#include <random>
#include "base/import.h"
#include "inputOutput/logging.h"
#include "files/fileMatrix.h"
#include "varianceComponentEstimation.h"
/***********************************************/
Matrix Vce::monteCarlo(UInt rows, UInt columns)
{
// init random generator
static std::mt19937_64 generator;
static Bool init = FALSE;
if(!init)
{
std::random_device randomDevice;
generator.seed(randomDevice());
init = TRUE;
}
Matrix e(rows, columns);
std::uniform_int_distribution<Int> binary(0,1);
for(UInt i=0; i<rows; i++)
for(UInt k=0; k<columns; k++)
e(i, k) = binary(generator) * 2 - 1;
return 1./std::sqrt(columns) * e;
}
/***********************************************/
Double Vce::standardDeviation(Double ePe, Double redundancy, Double huber, Double huberPower)
{
static Double huber_ = NAN;
static Double huberPower_ = NAN;
static Double sum = NAN;
if((huber_ == huber) && (huberPower_ == huberPower))
return std::sqrt(ePe/redundancy/sum);
constexpr Double dx = 1e-4;
huber_ = huber;
huberPower_ = huberPower;
sum = 0;
Double x = dx/2;
// variance of normal distribution
for(; x<std::min(huber, 10.); x+=dx)
sum += x*x * std::exp(-0.5*x*x) * dx;
// variance of downweighted normal distribution
for(; x<10.; x+=dx)
sum += x*x*std::pow(x/huber, -2*huberPower) * std::exp(-0.5*x*x) * dx;
sum *= 2./std::sqrt(2*PI);
return std::sqrt(ePe/redundancy/sum);
}
/***********************************************/
Matrix Vce::robustLeastSquares(const_MatrixSliceRef A, const_MatrixSliceRef l, UInt countGroup,
Double huber, Double huberPower, UInt maxIter, Vector &sigma)
{
try
{
std::vector<UInt> indexGroup(l.rows()/countGroup+1);
indexGroup.at(0) = 0;
for(UInt i=1; i<indexGroup.size(); i++)
indexGroup.at(i) = indexGroup.at(i-1) + countGroup;
return robustLeastSquares(A, l, indexGroup, huber, huberPower, maxIter, sigma);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Matrix Vce::robustLeastSquares(const_MatrixSliceRef A, const_MatrixSliceRef l, const std::vector<UInt> &indexGroup,
Double huber, Double huberPower, UInt maxIter, Vector &sigma)
{
try
{
Matrix x;
UInt countOutlier = 0;
Double sigma0 = 0;
sigma = Vector(indexGroup.size()-1, 1.);
for(UInt iter=0; iter<maxIter; iter++)
{
// weighting
Matrix Wl = l;
Matrix WA = A;
for(UInt i=0; i<sigma.rows(); i++)
{
Wl.row(indexGroup.at(i), indexGroup.at(i+1)-indexGroup.at(i)) *= 1./sigma(i);
WA.row(indexGroup.at(i), indexGroup.at(i+1)-indexGroup.at(i)) *= 1./sigma(i);
}
// QR decomposition
const Vector tau = QR_decomposition(WA);
QTransMult(WA, tau, Wl); // transform observations: l:= Q'l
x = Wl.row(0, WA.columns());
triangularSolve(1., WA.row(0, WA.columns()), x);
Wl.row(0, WA.columns()).setNull(); // residuals: remove WB*x
QMult(WA, tau, Wl); // back transformation
generateQ(WA, tau); // for redundancies
if(sigma0 == 0.)
sigma0 = std::sqrt(quadsum(Wl)/(Wl.size()-x.size()));
// outlier detection
UInt countOutlierNew = 0;
Double ePeSum = 0.;
Double rSum = 0.;
for(UInt i=0; i<sigma.rows(); i++)
{
const Double ePe = quadsum(Wl.row(indexGroup.at(i), indexGroup.at(i+1)-indexGroup.at(i)))/Wl.columns();
const Double r = indexGroup.at(i+1)-indexGroup.at(i) - quadsum(WA.row(indexGroup.at(i), indexGroup.at(i+1)-indexGroup.at(i)));
const Double s = std::sqrt(ePe/r)*sigma(i)/sigma0;
ePeSum += ePe;
rSum += r;
sigma(i) = 1.;
if((s > huber) && (r > 1e-4)) // redundancy: it is possible to estimate sigma?
{
sigma(i) = std::pow(s/huber, huberPower);
countOutlierNew++;
}
}
const Double sigma0New = standardDeviation(ePeSum, rSum, huber, huberPower);
if((countOutlierNew == 0) || ((countOutlier == countOutlierNew) && (std::fabs(sigma0New-sigma0)/sigma0 < 0.001)))
break;
sigma0 = sigma0New;
countOutlier = countOutlierNew;
} // for(iter)
return x;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
/***********************************************/
Matrix Vce::cosTransform(UInt length)
{
Matrix T(length, length);
if(!length)
return T;
for(UInt i=0; i<length; i++)
for(UInt k=0; k<length; k++)
T(i,k) = 2*std::cos(PI*i*k/(length-1));
T.column(0) *= 0.5;
T.column(length-1) *= 0.5;
T *= 1./std::sqrt(2.*(length-1)); // normalize
return T;
}
/***********************************************/
Matrix Vce::readCovarianceFunction(const FileName &name, UInt length, UInt columns, Double sampling)
{
try
{
if(!name.empty())
{
Matrix covFunc;
readFileMatrix(name, covFunc);
if(covFunc.columns() != columns+1)
throw(Exception("input apriori covariance function <"+name.str()+"> seems not to be compatible"));
if(covFunc.rows() < length)
throw(Exception("input apriori covariance function <"+name.str()+"> is too short"));
if(covFunc.rows() && (std::fabs(covFunc(1,0)-covFunc(0,0)-sampling) > 1e-3)) // test sampling
throw(Exception("input apriori covariance function <"+name.str()+"> has wrong sampling"));
return covFunc.row(0,length);
}
// default is white noise
Matrix covFunc(length, 1+columns);
for(UInt i=0; i<covFunc.rows(); i++)
covFunc(i,0) = i*sampling;
if(covFunc.rows())
for(UInt k=0; k<columns; k++)
covFunc(0,1+k) = 1.0;
return covFunc;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void Vce::redundancy(const_MatrixSliceRef W, const_MatrixSliceRef We, const_MatrixSliceRef WA, const_MatrixSliceRef WB,
Matrix &R, Vector &WWe)
{
try
{
// to compute e^T Sigma^-1 V_i Sigma^-1 e
// WWe = Sigma^-1 e with Sigma = W^T W
// (decorrelate again)
WWe = We;
triangularSolve(1., W, WWe);
// Compute redundancy
// R := Sigma^-1 - Sigma^-1 * (B A) * N^-1 * (B A)^T * Sigma^-1
// = Sigma^-1 - W^(-1)*Q1*Q1^T*W^T - W^(-1)*Q2*WA*N^(-1)*N^T*WA^T*Q2^T*W^T
// ---------------------------------------------------------------------
R = W;
cholesky2Inverse(R);
if(WA.size())
{
Matrix WWA = WA;
triangularSolve(1., W, WWA);
rankKUpdate(-1., WWA.trans(), R);
}
if(WB.size())
{
Matrix WWB = WB;
triangularSolve(1., W, WWB);
rankKUpdate(-1., WWB.trans(), R);
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void Vce::matrix(const_MatrixSliceRef R, const_MatrixSliceRef WWe, const_MatrixSliceRef Cov,
Double &ePe, Double &redundancy)
{
try
{
Matrix CC = Cov;
Matrix RR = R;
fillSymmetric(RR);
fillSymmetric(CC);
ePe += inner(WWe, CC * WWe); // e.T Sigma^-1 C Sigma^-1 e
redundancy += inner(CC, RR); // trace(RC)
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void Vce::psd(const_MatrixSliceRef R, const_MatrixSliceRef WWe,
const std::vector<UInt> &index, Double sigma, const_MatrixSliceRef CosTransform, const_MatrixSliceRef Psd,
MatrixSliceRef ePe, MatrixSliceRef redundancy, Double &ePeSum, Double &redundancySum)
{
try
{
const UInt countAxis = Psd.columns();
for(UInt idAxis=0; idAxis<countAxis; idAxis++)
{
Vector e(CosTransform.rows());
Vector r(CosTransform.rows());
for(UInt i=0; i<WWe.rows()/countAxis; i++)
for(UInt k=i; k<WWe.rows()/countAxis; k++)
{
e(index.at(k)-index.at(i)) += WWe(countAxis*i+idAxis,0)*WWe(countAxis*k+idAxis,0);
r(index.at(k)-index.at(i)) += R(countAxis*i+idAxis, countAxis*k+idAxis);
}
e.row(1, e.rows()-1) *= 2.; // consider lower triangular of matrix
r.row(1, r.rows()-1) *= 2.;
for(UInt idFreq=0; idFreq<Psd.rows(); idFreq++)
{
const_MatrixSliceRef cov(CosTransform.column(idFreq));
const Double ePeTmp = pow(sigma,2) * Psd(idFreq, idAxis) * inner(e, cov);
const Double redundancyTmp = pow(sigma,2) * Psd(idFreq, idAxis) * inner(r, cov);
if((ePeTmp > 0) && !std::isnan(ePeTmp) && (redundancyTmp > 0) && !std::isnan(redundancyTmp))
{
ePe(idFreq, idAxis) += ePeTmp;
redundancy(idFreq, idAxis) += redundancyTmp;
ePeSum += ePeTmp;
redundancySum += redundancyTmp;
}
} // for(idFreq)
} // for(idAxis)
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void Vce::estimatePsd(MatrixSliceRef ePe, MatrixSliceRef redundancy, MatrixSliceRef Psd, Double &maxFactor, Bool jointZeroFrequency)
{
try
{
if(!Psd.size())
return;
// freq=0, special case: mean is usually removed -> not estimable
// -> estimate first two frequencies together
if(jointZeroFrequency)
{
ePe.row(1) += ePe.row(0);
redundancy.row(1) += redundancy.row(0);
copy(ePe.row(1), ePe.row(0));
copy(redundancy.row(1), redundancy.row(0));
}
for(UInt idAxis=0; idAxis<Psd.columns(); idAxis++)
for(UInt idFreq=0; idFreq<Psd.rows(); idFreq++) // frequencies 0, 1,2,3 ...
{
Double factor = ePe(idFreq, idAxis)/redundancy(idFreq, idAxis);
if(std::isnan(factor) || (factor <= 0))
{
logWarning<<idFreq<<". frequency, (idAxis="<<idAxis<<") negative factor = "<<ePe(idFreq, idAxis)<<" / "<<redundancy(idFreq, idAxis)<<Log::endl;
factor = 1;
}
Psd(idFreq, idAxis) *= factor;
maxFactor = std::max(maxFactor, sqrt(exp(fabs(log(factor)))));
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Double Vce::meanSigma(const Vector &sigma)
{
try
{
std::vector<Double> s = sigma;
std::sort(s.begin(), s.end());
s.erase(std::remove_if(s.begin(), s.end(), [](Double x){return x <= 0;}), s.end());
if(!s.size())
return 0;
const UInt begin = s.size()/4;
const UInt end = s.size()-s.size()/4;
Double sigma0 = 0;
for(UInt i=begin; i<end; i++)
sigma0 += s.at(i)/(end-begin);
return sigma0;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|