File: graceCoefficients2BlockMeanTimeSplines.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (262 lines) | stat: -rw-r--r-- 9,947 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/***********************************************/
/**
* @file graceCoefficients2BlockMeanTimeSplines.cpp
*
* @brief read GRACE data.
*
* @author Andreas Kvas
* @date 2019-09-19
*
*/
/***********************************************/

// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program converts potential coefficients from the GRACE SDS RL06 format
into \configFile{outputfileTimeSplines}{timeSplinesGravityField}.

The \configFile{outputfileTimeSeries}{instrument} contains the mid points
of non-empty intervals and \configFile{outputfileTimeIntervals}{instrument}
contains the monthly interval boundaries from first to last solution.

The output will always be monthly block means. If the SDS solutions do vary or overlap,
the nearest solution in terms of reference epoch is used.
)";

/***********************************************/

#include "programs/program.h"
#include "base/string.h"
#include "inputOutput/file.h"
#include "files/fileInstrument.h"
#include "files/fileTimeSplinesGravityfield.h"

/***** CLASS ***********************************/

/** @brief Read GRACE data.
* @ingroup programsConversionGroup */
class GraceCoefficients2BlockMeanTimeSplines
{
private:
 SphericalHarmonics readPotentialCoefficients(const FileName &name, Time &timeStart, Time &timeEnd);

public:
  void run(Config &config, Parallel::CommunicatorPtr comm);
};

GROOPS_REGISTER_PROGRAM(GraceCoefficients2BlockMeanTimeSplines, SINGLEPROCESS, "read GRACE data", Conversion, Grace, PotentialCoefficients)

/***********************************************/

void GraceCoefficients2BlockMeanTimeSplines::run(Config &config, Parallel::CommunicatorPtr /*comm*/)
{
  try
  {
    FileName fileNameOut, fileNameCov, fileNameTimes, fileNameIntervals;
    std::vector<FileName> fileNameIn;

    readConfig(config, "outputfileTimeSplines",           fileNameOut,       Config::MUSTSET,  "", "");
    readConfig(config, "outputfileTimeSplinesCovariance", fileNameCov,       Config::OPTIONAL, "", "only the variances are saved");
    readConfig(config, "outputfileTimeSeries",            fileNameTimes,     Config::OPTIONAL, "", "mid points of non-empty intervals");
    readConfig(config, "outputfileTimeIntervals",         fileNameIntervals, Config::OPTIONAL, "", "monthly interval boundaries from first to last solution");
    readConfig(config, "inputfile",                       fileNameIn,        Config::MUSTSET,  "", "");
    if(isCreateSchema(config)) return;

    std::vector<SphericalHarmonics> harmonics;
    std::vector<Time> solutionStart, solutionEnd;
    Double GM = DEFAULT_GM;
    Double R  = DEFAULT_R;
    UInt   maxDegree = 0;
    for(auto &f : fileNameIn)
    {
      logStatus<<"read file <"<<f<<">"<<Log::endl;
      Time timeStart, timeEnd;
      harmonics.push_back(readPotentialCoefficients(f, timeStart, timeEnd));

      solutionStart.push_back(timeStart);
      solutionEnd.push_back(timeEnd);
      GM = harmonics.back().GM();
      R  = harmonics.back().R();
      maxDegree = std::max(maxDegree, harmonics.back().maxDegree());
    }
    const auto minTime = std::min_element(solutionStart.begin(), solutionStart.end());
    const auto maxTime = std::max_element(solutionEnd.begin(), solutionEnd.end());

    // monthly time intervals
    // ----------------------
    UInt year, month, day, dummy;
    Double second;
    minTime->date(year, month, day, dummy, dummy, second);

    std::vector<Time> intervals = {date2time(year, month, 1)};
    while(intervals.back() < *maxTime)
    {
      UInt year, month, day, dummy;
      Double second;
      intervals.back().date(year, month, day, dummy, dummy, second);
      intervals.push_back(date2time(year, month+1, 1));
    }

    std::vector<Matrix> cnmList, snmList, sigma2List;
    std::vector<Time> nonEmptyIntervals;
    for(UInt idxInterval=0; idxInterval<intervals.size()-1; idxInterval++)
    {
      Time epochMid = 0.5*(intervals.at(idxInterval)+intervals.at(idxInterval+1));

      std::vector<UInt> overlappingSolutions;
      for(UInt k=0; k<solutionStart.size(); k++)
        if(!((intervals.at(idxInterval) >= solutionEnd.at(k)) || (solutionStart.at(k) >= intervals.at(idxInterval+1))))
          overlappingSolutions.push_back(k);

      if(overlappingSolutions.size()>1)
        logWarning<<"Multiple solutions for interval ("<<intervals.at(idxInterval).dateStr()<<", "<<intervals.at(idxInterval+1).dateStr()<<"). Using nearest neighbour."<<Log::endl;

      SphericalHarmonics harm;
      if(overlappingSolutions.size() > 0)
      {
        auto it = std::min_element(overlappingSolutions.begin(), overlappingSolutions.end(), [&](UInt i, UInt j)
        {return std::abs((epochMid - (solutionStart.at(i)*0.5+solutionEnd.at(i)*0.5)).mjd()) < std::abs((epochMid - (solutionStart.at(j)*0.5+solutionEnd.at(j)*0.5)).mjd());});

        harm = harmonics.at(*it).get(maxDegree, 0, GM, R);
        nonEmptyIntervals.push_back(epochMid);
      }
      else
      {
        logWarning<<"Interval ("<<intervals.at(idxInterval).dateStr()<<", "<<intervals.at(idxInterval+1).dateStr()<<") is empty."<<Log::endl;
        harm = harm.get(maxDegree, 0, GM, R);
      }
      cnmList.push_back(harm.cnm());
      snmList.push_back(harm.snm());
      sigma2List.push_back(harm.sigma2x());
    }

    // write timeSplines file
    // ----------------------
    logStatus<<"write time splines to file <"<<fileNameOut<<">"<<Log::endl;
    writeFileTimeSplinesGravityfield(fileNameOut, GM, R, 0, intervals, cnmList, snmList);

    if(!fileNameCov.empty())
    {
      logStatus<<"write covariance time splines to file <"<<fileNameCov<<">"<<Log::endl;
      writeFileTimeSplinesCovariance(fileNameCov, GM, R, 0, maxDegree, 0, intervals, sigma2List);
    }
    if(!fileNameTimes.empty())
    {
      logStatus<<"write midpoints of non-empty intervals to <"<<fileNameTimes<<">"<<Log::endl;
      InstrumentFile::write(fileNameTimes, Arc(nonEmptyIntervals, Matrix(nonEmptyIntervals.size(), 1)));
    }
    if(!fileNameIntervals.empty())
    {
      logStatus<<"write monthly intervals to <"<<fileNameIntervals<<">"<<Log::endl;
      InstrumentFile::write(fileNameIntervals, Arc(intervals, Matrix(intervals.size(), 1)));
    }
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

SphericalHarmonics GraceCoefficients2BlockMeanTimeSplines::readPotentialCoefficients(const FileName &name, Time &timeStart, Time &timeEnd)
{
  try
  {
    InFile file(name);

    Double  GM = 0.3986004415e15;
    Double  R  = 0.6378136460e07;
    Matrix  cnm, snm, sigma2cnm, sigma2snm;
    timeStart = date2time(9999,1,1);
    timeEnd   = date2time(1, 1, 1);

    Bool seekR = FALSE;
    Bool seekGM = FALSE;
    Bool seekDegree = FALSE;

    std::string line;
    while(std::getline(file, line))
    {
      if(line.find("dimension") != std::string::npos)
        seekDegree=TRUE;
      if( (line.find("degree") != std::string::npos) && seekDegree )
      {
        auto start_search = line.find(":");
        std::stringstream ss(line.substr(start_search+1));
        UInt degree = INFINITYDEGREE;
        ss>>degree;
        cnm       = Matrix(degree+1, Matrix::TRIANGULAR, Matrix::LOWER);
        snm       = Matrix(degree+1, Matrix::TRIANGULAR, Matrix::LOWER);
        sigma2cnm = Matrix(degree+1, Matrix::TRIANGULAR, Matrix::LOWER);
        sigma2snm = Matrix(degree+1, Matrix::TRIANGULAR, Matrix::LOWER);
        seekDegree = FALSE;
      }

      if(line.find("SHM ")==0)
      {
        UInt degree = String::toInt(line.substr(6, 5));
        cnm       = Matrix(degree+1, Matrix::TRIANGULAR, Matrix::LOWER);
        snm       = Matrix(degree+1, Matrix::TRIANGULAR, Matrix::LOWER);
        sigma2cnm = Matrix(degree+1, Matrix::TRIANGULAR, Matrix::LOWER);
        sigma2snm = Matrix(degree+1, Matrix::TRIANGULAR, Matrix::LOWER);
      }
      if(line.find("EARTH ")==0)
      {
        GM = String::toDouble(line.substr(6, 16));
        R  = String::toDouble(line.substr(23, 16));
      }

      if(line.find("mean_equator_radius") != std::string::npos)
        seekR = TRUE;
      if( (line.find("value") != std::string::npos) && seekR )
      {
        auto start_search = line.find(":");
        std::stringstream ss(line.substr(start_search+1));
        ss>>R;
        seekR = FALSE;
      }

      if(line.find("earth_gravity_param") != std::string::npos)
        seekGM = TRUE;
      if( (line.find("value") != std::string::npos) && seekGM )
      {
        auto start_search = line.find(":");
        std::stringstream ss(line.substr(start_search+1));
        ss>>GM;
        seekGM = FALSE;
      }

      if((line.find("GRCOEF")==0)||(line.find("GRCOF2")==0))
      {
        const UInt n    = String::toInt(line.substr(6, 5));
        const UInt m    = String::toInt(line.substr(11, 5));
        cnm(n,m)        = String::toDouble(line.substr(17, 18));
        snm(n,m)        = String::toDouble(line.substr(36, 18));
        sigma2cnm(n,m)  = String::toDouble(line.substr(55, 10));
        sigma2snm(n,m)  = String::toDouble(line.substr(66, 10));
        sigma2cnm(n,m) *= sigma2cnm(n,m);
        sigma2snm(n,m) *= sigma2snm(n,m);

        const UInt yearStart  = String::toInt(line.substr(77, 4));
        const UInt monthStart = String::toInt(line.substr(81, 2));
        const UInt dayStart   = String::toInt(line.substr(83, 2));
        timeStart = std::min(timeStart, date2time(yearStart, monthStart, dayStart));

        const UInt yearEnd    = String::toInt(line.substr(91, 4));
        const UInt monthEnd   = String::toInt(line.substr(95, 2));
        const UInt dayEnd     = String::toInt(line.substr(97, 2));
        timeEnd = std::max(timeEnd, date2time(yearEnd, monthEnd, dayEnd));
      }
    }

    return SphericalHarmonics(GM, R, cnm, snm, sigma2cnm, sigma2snm);
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/