1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
/***********************************************/
/**
* @file gnssResiduals2AccuracyDefinition.cpp
*
* @brief Compute antenna accuracies from observation residuals.
*
* @author Torsten Mayer-Guerr
* @date 2012-11-19
*/
/***********************************************/
// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
Compute antenna accuracies from observation \configFile{inputfileResiduals}{instrument}.
The \configFile{inputfileStationInfo}{platform} is needed to assign
the residuals to the equipped antenna at observation times.
The \configFile{outputfileAccuracyDefinition}{gnssAntennaDefinition} contains
at first step the same accuracy information for all antennas as the input file.
Only the azimuth~$A$ and elevation~$E$ dependent grid points of the patterns
where enough residuals are available ($>$ \config{minRedundancy})
are replaced by estimated accuracy
\begin{equation}
\sigma(A,E) = \sqrt{\frac{\sum_i e_i^2(A,E)}{\sum_i r_i(A,E)}},
\end{equation}
where $e_i$ are the azimuth and elevation dependent residuals and $r_i$ the
corresponding redundancies (number of observations minus the contribution to
the estimated parameters).
The \configFile{inputfileAccuracyDefinition}{gnssAntennaDefinition} can be modified
to the demands before with \program{GnssAntennaDefinitionCreate}
(e.g. with \config{antenna:resample}).
To verify the results the \configFile{outputfileAntennaMean}{gnssAntennaDefinition}
and the accumulated \configFile{outputfileAntennaRedundancy}{gnssAntennaDefinition}
of the computed pattern grid points can be written.
Example: Analysis of TerraSAR-X residuals of one month shows that low elevation
GPS satellites are not tracked by the onboard receiver. An estimation of accuracies
for these directions is not possible from the residuals and the apriori accuracies
are left untouched. The other directions show very low phase noise hardly elevation
and azimuth dependent for L2W. A nearly zero mean indicates the use of adequate antennca
center variations in the processing.
\fig{!hb}{0.8}{gnssResiduals2AccuracyDefinition}{fig:gnssResiduals2AccuracyDefinition}{L2W accuracies of TerraSAR-X determined from residuals of one month}
See also \program{GnssResiduals2TransmitterAccuracyDefinition}.
)";
/***********************************************/
#include "programs/program.h"
#include "files/fileInstrument.h"
#include "files/filePlatform.h"
#include "inputOutput/system.h"
/***** CLASS ***********************************/
/** @brief Compute antenna definition from observation residuals.
* @ingroup programsGroup */
class GnssResiduals2AccuracyDefinition
{
public:
void run(Config &config, Parallel::CommunicatorPtr comm);
};
GROOPS_REGISTER_PROGRAM(GnssResiduals2AccuracyDefinition, SINGLEPROCESS, "Compute accuracy definition from observation residuals", Gnss)
GROOPS_RENAMED_PROGRAM(GnssResiduals2AntennaDefinition, GnssResiduals2AccuracyDefinition, date2time(2020, 6, 26))
/***********************************************/
void GnssResiduals2AccuracyDefinition::run(Config &config, Parallel::CommunicatorPtr /*comm*/)
{
try
{
FileName fileNameAntennaMean, fileNameAntennaAccuracy, fileNameAntennaRedundancy;
FileName fileNameStationInfo, fileNameAntenna;
std::vector<FileName> fileNameResiduals;
Bool isTransmitter;
Double thresholdOutlier, minRedundancy;
renameDeprecatedConfig(config, "outputfileAntennaDefinition", "outputfileAntennaMean", date2time(2020, 7, 4));
readConfig(config, "outputfileAccuracyDefinition", fileNameAntennaAccuracy, Config::OPTIONAL, "", "elevation and azimuth dependent accuracy");
readConfig(config, "outputfileAntennaMean", fileNameAntennaMean, Config::OPTIONAL, "", "weighted mean of the residuals");
readConfig(config, "outputfileAntennaRedundancy", fileNameAntennaRedundancy, Config::OPTIONAL, "", "redundancy of adjustment");
readConfig(config, "inputfileAccuracyDefinition", fileNameAntenna, Config::MUSTSET, "", "apriori accuracies");
readConfig(config, "inputfileStationInfo", fileNameStationInfo, Config::MUSTSET, "", "to assign residuals to antennas");
readConfig(config, "isTransmitter", isTransmitter, Config::DEFAULT, "0", "stationInfo is of a transmitter");
readConfig(config, "thresholdOutlier", thresholdOutlier, Config::DEFAULT, "10", "ignore residuals with sigma/sigma0 greater than threshold");
readConfig(config, "minRedundancy", minRedundancy, Config::DEFAULT, "3", "min number of residuals. to estimate sigma");
readConfig(config, "inputfileResiduals", fileNameResiduals, Config::MUSTSET, "", "GNSS receiver residuals");
if(isCreateSchema(config)) return;
// ============================
Platform stationInfo;
if(!fileNameStationInfo.empty())
readFilePlatform(fileNameStationInfo, stationInfo);
GnssType typePRN;
if(isTransmitter)
typePRN = GnssType("***"+stationInfo.markerNumber);
std::vector<GnssAntennaDefinitionPtr> antennaList;
if(!fileNameAntenna.empty())
{
readFileGnssAntennaDefinition(fileNameAntenna, antennaList);
stationInfo.fillGnssAntennaDefinition(antennaList);
}
// ============================
for(const FileName &fileName : fileNameResiduals)
{
logStatus<<"read GNSS residuals <"<<fileName<<">"<<Log::endl;
if(!System::exists(fileName))
{
logWarning<<"file not exist -> continue"<<Log::endl;
continue;
}
InstrumentFile fileReceiver(fileName);
for(UInt arcNo=0; arcNo<fileReceiver.arcCount(); arcNo++)
{
GnssReceiverArc arc = fileReceiver.readArc(arcNo);
for(auto &epoch : arc)
{
// find antenna for epoch
auto ant= stationInfo.findEquipment<PlatformGnssAntenna>(epoch.time);
if(!ant)
continue;
GnssAntennaDefinitionPtr antenna = ant->antennaDef;
if(!antenna)
throw(Exception(epoch.time.dateTimeStr()+": antenna not found: "+ant->str()));
UInt idObs = 0;
for(GnssType satType : epoch.satellite)
{
// find type for the satellite system
UInt idType = 0;
while(epoch.obsType.at(idType) != satType)
idType++;
// azimuth and elevation
if((epoch.obsType.at(idType+0) != (GnssType::AZIMUT + GnssType::L1)) ||
(epoch.obsType.at(idType+1) != (GnssType::ELEVATION + GnssType::L1)) ||
(epoch.obsType.at(idType+2) != (GnssType::AZIMUT + GnssType::L2)) ||
(epoch.obsType.at(idType+3) != (GnssType::ELEVATION + GnssType::L2)))
throw(Exception("azimuth and elevation expected"));
Double azimuth = epoch.observation.at(idObs+0);
Double elevation = epoch.observation.at(idObs+1);
if(isTransmitter)
{
azimuth = epoch.observation.at(idObs+2);
elevation = epoch.observation.at(idObs+3);
}
idObs += 4; // skip azimuth and elevation
idType += 4;
// resiudals, redundancy, sigma/sigma0
while((idType<epoch.obsType.size()) && (idObs<epoch.observation.size()) && (epoch.obsType.at(idType) == satType))
{
GnssType type = epoch.obsType.at(idType++);
Double value = epoch.observation.at(idObs++);
Double redundancy=0, sigma=0;
if((idType < epoch.obsType.size()) && (type == epoch.obsType.at(idType))) // next redundancy?
{
type = epoch.obsType.at(idType++);
redundancy = epoch.observation.at(idObs++);
}
if((idType < epoch.obsType.size()) && (type == epoch.obsType.at(idType))) // next sigma?
{
type = epoch.obsType.at(idType++);
sigma = epoch.observation.at(idObs++);
}
while((idType < epoch.obsType.size()) && (type == epoch.obsType.at(idType))) // other additional information?
idObs++, idType++;
if(value)
for(GnssAntennaPattern &pattern : antenna->patterns)
if(type+satType == pattern.type+typePRN)
{
const UInt idxL = static_cast<UInt>(std::round((Double(azimuth)+2*PI)/(2*PI)*pattern.pattern.rows()))%pattern.pattern.rows();
const UInt idxB = static_cast<UInt>(std::round((PI/2-Double(elevation))/Double(pattern.dZenit)));
if(idxB >= pattern.pattern.columns())
break;
if(!pattern.count.size())
{
pattern.sum = Matrix(pattern.pattern.rows(), pattern.pattern.columns());
pattern.ePe = Matrix(pattern.pattern.rows(), pattern.pattern.columns());
pattern.redundancy = Matrix(pattern.pattern.rows(), pattern.pattern.columns());
pattern.count = Matrix(pattern.pattern.rows(), pattern.pattern.columns());
}
// residuals?
if((redundancy > 0) && (sigma > 0) && (sigma <= thresholdOutlier))
{
const Double p = 1./std::pow(sigma, 2); // weight
pattern.ePe(idxL,idxB) += std::pow(value, 2);
pattern.redundancy(idxL,idxB) += redundancy;
pattern.sum(idxL,idxB) += p * value;
pattern.count(idxL,idxB) += p;
}
// observations?
if(std::isnan(redundancy) || (redundancy <= 0))
{
pattern.ePe(idxL,idxB) += std::pow(value, 2);
pattern.redundancy(idxL,idxB) += 1;
pattern.sum(idxL,idxB) += value;
pattern.count(idxL,idxB) += 1;
}
break;
}
} // while()
} // for(satType)
} // for(epoch)
} // for(arcNo)
} // for(idFile)
// ============================
// only one value at zenith
for(auto &antenna : antennaList)
for(auto &pattern : antenna->patterns)
if(pattern.count.size())
{
copy(Vector(pattern.pattern.rows(), sum(pattern.sum .column(0))), pattern.sum .column(0));
copy(Vector(pattern.pattern.rows(), sum(pattern.ePe .column(0))), pattern.ePe .column(0));
copy(Vector(pattern.pattern.rows(), sum(pattern.redundancy.column(0))), pattern.redundancy.column(0));
copy(Vector(pattern.pattern.rows(), sum(pattern.count .column(0))), pattern.count .column(0));
}
// ============================
if(!fileNameAntennaAccuracy.empty())
{
logStatus<<"write accuracy definition <"<<fileNameAntennaAccuracy<<">"<<Log::endl;
for(auto &antenna : antennaList)
for(auto &pattern : antenna->patterns)
if(pattern.count.size())
{
pattern.offset = Vector3d();
for(UInt i=0; i<pattern.pattern.rows(); i++)
for(UInt k=0; k<pattern.pattern.columns(); k++)
if(pattern.redundancy(i, k) >= minRedundancy)
pattern.pattern(i, k) = std::sqrt(pattern.ePe(i, k)/pattern.redundancy(i, k));
}
writeFileGnssAntennaDefinition(fileNameAntennaAccuracy, antennaList);
}
for(auto &antenna : antennaList)
for(auto &pattern : antenna->patterns)
{
pattern.offset = Vector3d();
pattern.pattern *= NAN_EXPR;
}
if(!fileNameAntennaMean.empty())
{
logStatus<<"write antenna definition <"<<fileNameAntennaMean<<">"<<Log::endl;
for(auto &antenna : antennaList)
for(auto &pattern : antenna->patterns)
if(pattern.count.size())
for(UInt i=0; i<pattern.pattern.rows(); i++)
for(UInt k=0; k<pattern.pattern.columns(); k++)
pattern.pattern(i, k) = pattern.sum(i, k)/pattern.count(i, k);
writeFileGnssAntennaDefinition(fileNameAntennaMean, antennaList);
}
if(!fileNameAntennaRedundancy.empty())
{
logStatus<<"write redundancy <"<<fileNameAntennaRedundancy<<">"<<Log::endl;
for(auto &antenna : antennaList)
for(auto &pattern : antenna->patterns)
if(pattern.count.size())
for(UInt i=0; i<pattern.pattern.rows(); i++)
for(UInt k=0; k<pattern.pattern.columns(); k++)
if(pattern.redundancy(i, k) >= minRedundancy)
pattern.pattern(i, k) = pattern.redundancy(i, k);
writeFileGnssAntennaDefinition(fileNameAntennaRedundancy, antennaList);
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|