1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/***********************************************/
/**
* @file ensembleAveragingScaleModel.cpp
*
* @brief First order Ensemble Averaging
*
* @author Saniya Behzadpour
* @date 2018-05-01
*/
/***********************************************/
// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This programs estimate satellite-to-satellite-tracking (SST) deterministic signals due to eclipse transits from residuals.
The ensemble averaging method is used to characterize the average properties of signal shapes across all transit events.
Each shape is assigned to one arc of 3 hours (default). This can be modefied by enabling \config{averagingInterval}.
)";
/***********************************************/
#include "base/import.h"
#include "files/fileMatrix.h"
#include "files/fileInstrument.h"
#include "programs/program.h"
/***** CLASS ***********************************/
/** @brief First order Ensemble Averaging
* @ingroup programsGroup */
class EnsembleAveragingScaleModel
{
public:
void run(Config &config, Parallel::CommunicatorPtr comm);
};
GROOPS_REGISTER_PROGRAM(EnsembleAveragingScaleModel, SINGLEPROCESS, "Ensamble Averaging of eclipse transit signals", Grace)
/***********************************************/
void EnsembleAveragingScaleModel::run(Config &config, Parallel::CommunicatorPtr /*comm*/)
{
try
{
FileName outName;
FileName inName1, inName2, inNameSst;
UInt timeMargin, waveLength, neighborNumber;
Bool perArc = TRUE;
readConfig(config, "outputfileScaleModel" , outName, Config::MUSTSET, "", "");
readConfig(config, "inputfileGrace1EclipseFactor", inName1, Config::MUSTSET, "", "GRACE-A eclipse factors computed with integrated orbit");
readConfig(config, "inputfileGrace2EclipseFactor", inName2, Config::MUSTSET, "", "GRACE-B eclipse factors computed with integrated orbit");
readConfig(config, "inputfileGraceResiduals", inNameSst, Config::MUSTSET, "", "SST Residuals");
readConfig(config, "timeMargin", timeMargin, Config::MUSTSET, "25", "epochs before eclipse mode");
readConfig(config, "waveLength", waveLength, Config::MUSTSET, "60", "length of the sample wave");
if(readConfigSequence(config, "averagingInterval", Config::OPTIONAL, "", ""))
{
perArc = FALSE;
readConfig(config, "nearestNeighborNumber", neighborNumber, Config::DEFAULT, "24", "");
endSequence(config);
}
if(isCreateSchema(config)) return;
// =======================
std::vector<MiscValueArc> arcListEF1, arcListEF2;
std::vector<SatelliteTrackingArc> arcListRes;
SatelliteTrackingArc sstArc;
logStatus<<"read satellite data"<<Log::endl;
InstrumentFile fileSst(inNameSst);
InstrumentFile fileEF1(inName1);
InstrumentFile fileEF2(inName2);
InstrumentFile::checkArcCount({fileSst, fileEF1, fileEF2});
UInt arcCount = fileSst.arcCount();
arcListRes.resize(arcCount);
arcListEF1.resize(arcCount);
arcListEF2.resize(arcCount);
UInt countSst = 0;
for(UInt arcNo=0; arcNo<arcCount; arcNo++)
{
arcListRes.at(arcNo) = fileSst.readArc(arcNo);
arcListEF1.at(arcNo) = fileEF1.readArc(arcNo);
arcListEF2.at(arcNo) = fileEF2.readArc(arcNo);
}
std::vector<std::vector<Double>> sumWaveP (arcCount); //sum of the waves in each arc with positive criteria
std::vector<std::vector<Double>> sumWaveN (arcCount); //sum of the waves in each arc with negative criteria
std::vector<UInt> nP (arcCount); //number of the waves in each arc with positive criteria
std::vector<UInt> nN (arcCount); //number of the waves in each arc with positive criteria
logStatus<<"find candidates and compute the sum"<<Log::endl;
for(UInt arcNo=0; arcNo<arcCount; arcNo++)
{
sumWaveP.at(arcNo).resize(waveLength);
sumWaveN.at(arcNo).resize(waveLength);
nP.at(arcNo) = 1;
nN.at(arcNo) = 1;
Double criteria = 0;
countSst = arcListRes.at(arcNo).size();
for(UInt i=0; i<countSst; i++)
{
if(i < countSst - timeMargin)
{
criteria = arcListEF2.at(arcNo).at(i+timeMargin).value - arcListEF1.at(arcNo).at(i+timeMargin).value;
if(criteria >0)
{
UInt maxj = waveLength;
if (countSst - i < maxj)
maxj = countSst - i;
for(UInt j=i; j< i+maxj; j++)
sumWaveP.at(arcNo).at(j-i) += arcListRes.at(arcNo).at(j).rangeRate;
i = i + maxj;
nP.at(arcNo) = nP.at(arcNo) + 1 ;
}
else if(criteria < 0)
{
UInt maxj = waveLength;
if (countSst - i < maxj)
maxj = countSst - i;
for(UInt j=i; j< i+maxj; j++)
sumWaveN.at(arcNo).at(j-i) += arcListRes.at(arcNo).at(j).rangeRate;
i = i + maxj;
nN.at(arcNo) = nN.at(arcNo) + 1 ;
}
}
}
}
logStatus<<"compute the first order averaging"<<Log::endl;
UInt m = perArc ? arcCount: (UInt) arcCount/neighborNumber; //number of data segments
Matrix sumTotalP (waveLength,m);
Matrix sumTotalN (waveLength,m);
for(UInt arcNo=0; arcNo<arcCount; arcNo++)
for(UInt i=0; i< m; i++)
if ((arcNo >= i*arcCount/m)&&(arcNo < (i+1)*arcCount/m))
{
for(UInt j=0; j< waveLength; j++)
sumTotalP(j,i) += sumWaveP.at(arcNo).at(j) / nP.at(arcNo);
for(UInt j=0; j< waveLength; j++)
sumTotalN(j,i) += sumWaveN.at(arcNo).at(j) / nN.at(arcNo);
}
// Compute the desired signal
for(UInt arcNo=0; arcNo<arcCount; arcNo++)
{
UInt k =0;
for(UInt i=0; i< m; i++)
if((arcNo >= i*arcCount/m)&&(arcNo < (i+1)*arcCount/m))
k= i;
Double criteria = 0;
countSst = arcListRes.at(arcNo).size();
for(UInt i=0; i<countSst; i++)
{
if(i < countSst - timeMargin)
{
criteria = arcListEF2.at(arcNo).at(i+timeMargin).value - arcListEF1.at(arcNo).at(i+timeMargin).value;
if(criteria > 0)
{
UInt maxj = waveLength;
if (countSst - i < maxj)
maxj = countSst - i;
for(UInt j=i; j< i+maxj; j++)
{
SatelliteTrackingEpoch epoch;
epoch.time = arcListRes.at(arcNo).at(j).time;
epoch.range = epoch.rangeRate = epoch.rangeAcceleration = sumTotalP(j-i,k)/(arcCount/m);
sstArc.push_back(epoch);
}
i = i + maxj;
}
else if(criteria < 0)
{
UInt maxj = waveLength;
if (countSst - i < maxj)
maxj = countSst - i;
for(UInt j=i; j< i+maxj; j++)
{
SatelliteTrackingEpoch epoch;
epoch.time = arcListRes.at(arcNo).at(j).time;
epoch.range = epoch.rangeRate = epoch.rangeAcceleration = sumTotalN(j-i,k)/(arcCount/m);
sstArc.push_back(epoch);
}
i = i + maxj;
}
else
{
SatelliteTrackingEpoch epoch;
epoch.time = arcListRes.at(arcNo).at(i).time;
epoch.range = epoch.rangeRate = epoch.rangeAcceleration = 0;
sstArc.push_back(epoch);
}
}
else
{
SatelliteTrackingEpoch epoch;
epoch.time = arcListRes.at(arcNo).at(i).time;
epoch.range = epoch.rangeRate = epoch.rangeAcceleration = 0;
sstArc.push_back(epoch);
}
}
}
logStatus<<"write the output signal <"<<outName<<">"<<Log::endl;
InstrumentFile::write(outName, sstArc);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***************************************/
|