File: graceSstScaleModel.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (252 lines) | stat: -rw-r--r-- 9,827 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
/***********************************************/
/**
* @file graceSstScaleModel.cpp
*
* @brief First order Ensemble Averaging
*
* @author Saniya Behzadpour
* @date 2018-05-01
*/
/***********************************************/

// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This programs estimate satellite-to-satellite-tracking (SST) deterministic signals
due to eclipse transits and low-SNR values from post-fit residuals.
The low-SNR effects are estimated by directly using the residual values.
The ensemble averaging method is used to characterize the average properties of eclipse transit signal shapes across all transit events.
Each shape is assigned to one arc of 3 hours (default). This can be modefied by enabling \config{averagingInterval}.
)";

/***********************************************/

#include "base/import.h"
#include "files/fileMatrix.h"
#include "files/fileInstrument.h"
#include "programs/program.h"

/***** CLASS ***********************************/

/** @brief First order Ensemble Averaging
* @ingroup programsGroup */
class GraceSstScaleModel
{
public:
  void run(Config &config, Parallel::CommunicatorPtr comm);
};

GROOPS_REGISTER_PROGRAM(GraceSstScaleModel, SINGLEPROCESS, "Ensamble Averaging of eclipse transit signals", Grace, Instrument)

/***********************************************/

void GraceSstScaleModel::run(Config &config, Parallel::CommunicatorPtr /*comm*/)
{
  try
  {
    FileName outNameEclipse, outNameSnr;
    FileName inName1, inName2, inNameSst, inNameSnr;
    UInt     timeMargin, waveLength, neighborNumber;
    UInt     arcCount = 0;
    UInt     countSst = 0;
    Bool     perArc = TRUE;
    Bool     lowSnr = FALSE;
    Bool     eclipseTransit = FALSE;

    readConfig(config, "inputfileGraceResiduals", inNameSst,  Config::MUSTSET, "",   "SST Residuals");
    readConfig(config, "timeMargin",              timeMargin, Config::MUSTSET, "25", "epochs before instrumental events");
    readConfig(config, "waveLength",              waveLength, Config::MUSTSET, "60", "length of the sample wave");
    if(readConfigSequence(config, "estimateEclipseTransitScale", Config::OPTIONAL, "", ""))
    {
      eclipseTransit = TRUE;
      readConfig(config, "outputfileScaleModel" ,        outNameEclipse, Config::MUSTSET, "", "");
      readConfig(config, "inputfileGrace1EclipseFactor", inName1,        Config::MUSTSET, "", "GRACE-A eclipse factors computed with integrated orbit");
      readConfig(config, "inputfileGrace2EclipseFactor", inName2,        Config::MUSTSET, "", "GRACE-B eclipse factors computed with integrated orbit");
      if(readConfigSequence(config, "averagingInterval", Config::OPTIONAL, "", ""))
      {
        perArc = FALSE;
        readConfig(config, "nearestNeighborNumber", neighborNumber, Config::DEFAULT, "24", "");
        endSequence(config);
      }
      endSequence(config);
    }
    if(readConfigSequence(config, "estimateLowSnrScale", Config::OPTIONAL, "", ""))
    {
      lowSnr = TRUE;
      readConfig(config, "outputfileScaleModel", outNameSnr, Config::MUSTSET, "", "");
      readConfig(config, "inputfileGraceSstSNR", inNameSnr,  Config::MUSTSET, "", "GRACE SNR values");
      endSequence(config);
    }
    if(isCreateSchema(config)) return;

    // =======================

    std::vector<MiscValueArc>         arcListEF1, arcListEF2;
    std::vector<SatelliteTrackingArc> arcListRes;
    SatelliteTrackingArc              sstArc_1, sstArc_2;

    logStatus<<"read satellite data"<< lowSnr <<Log::endl;
    InstrumentFile fileSst(inNameSst);
    arcCount = fileSst.arcCount();
    arcListRes.resize(arcCount);
    for(UInt arcNo=0; arcNo<arcCount; arcNo++)
        arcListRes.at(arcNo)  = fileSst.readArc(arcNo);

    if(eclipseTransit)
    {
      InstrumentFile fileEF1(inName1);
      InstrumentFile fileEF2(inName2);
      InstrumentFile::checkArcCount({fileSst, fileEF1, fileEF2});
      arcListEF1.resize(arcCount);
      arcListEF2.resize(arcCount);
      std::vector<std::vector<Double>> sumWaveP (arcCount); //sum of the waves in each arc with positive criteria
      std::vector<std::vector<Double>> sumWaveN (arcCount); //sum of the waves in each arc with negative criteria
      std::vector<UInt> nP (arcCount); //number of the waves in each arc with positive criteria
      std::vector<UInt> nN (arcCount); //number of the waves in each arc with positive criteria

      logStatus<<"find candidates and compute the sum"<<Log::endl;
      for(UInt arcNo=0; arcNo<arcCount; arcNo++)
      {
        arcListEF1.at(arcNo)  = fileEF1.readArc(arcNo);
        arcListEF2.at(arcNo)  = fileEF2.readArc(arcNo);
        sumWaveP.at(arcNo).resize(waveLength);
        sumWaveN.at(arcNo).resize(waveLength);
        nP.at(arcNo) = 1;
        nN.at(arcNo) = 1;
        Double criteria = 0;

        countSst = arcListRes.at(arcNo).size();
        for(UInt i=0; i<countSst; i++)
        {
          if(i < countSst - timeMargin)
          {
            criteria = arcListEF2.at(arcNo).at(i+timeMargin).value - arcListEF1.at(arcNo).at(i+timeMargin).value;
            if(criteria >0)
            {
              UInt maxj = waveLength;
              if (countSst - i < maxj)
                  maxj = countSst - i;
              for(UInt j=i; j< i+maxj; j++)
                sumWaveP.at(arcNo).at(j-i) += arcListRes.at(arcNo).at(j).rangeRate;
              i = i + maxj-1;
              nP.at(arcNo) = nP.at(arcNo) + 1 ;
            }
            else if(criteria < 0)
            {
              UInt maxj = waveLength;
              if (countSst - i < maxj)
                  maxj = countSst - i;
              for(UInt j=i; j< i+maxj; j++)
                sumWaveN.at(arcNo).at(j-i) += arcListRes.at(arcNo).at(j).rangeRate;
              i = i + maxj-1;
              nN.at(arcNo) = nN.at(arcNo) + 1 ;
            }
          }
        }
      }

      UInt m = perArc ? arcCount: (UInt) arcCount/neighborNumber; //number of data segments
      Matrix sumTotalP (waveLength,m);
      Matrix sumTotalN (waveLength,m);
      for(UInt arcNo=0; arcNo<arcCount; arcNo++)
        for(UInt i=0; i< m; i++)
          if ((arcNo >= i*arcCount/m)&&(arcNo < (i+1)*arcCount/m))
          {
            for(UInt j=0; j< waveLength; j++)
              sumTotalP(j,i) += sumWaveP.at(arcNo).at(j) / nP.at(arcNo);
            for(UInt j=0; j< waveLength; j++)
              sumTotalN(j,i) += sumWaveN.at(arcNo).at(j) / nN.at(arcNo);
          }
      // Compute the desired signal
      for(UInt arcNo=0; arcNo<arcCount; arcNo++)
      {
        UInt k =0;
        for(UInt i=0; i< m; i++)
          if ((arcNo >= i*arcCount/m)&&(arcNo < (i+1)*arcCount/m))
              k= i;
        Double criteria = 0;
        countSst = arcListRes.at(arcNo).size();
        for(UInt i=0; i<countSst; i++)
        {
          if(i < (countSst - timeMargin))
          {
            criteria = arcListEF2.at(arcNo).at(i+timeMargin).value - arcListEF1.at(arcNo).at(i+timeMargin).value;
            if(criteria > 0)
            {
              UInt maxj = waveLength;
              if (countSst - i < maxj)
                  maxj = countSst - i;
              for(UInt j=i; j< i+maxj; j++)
              {
                SatelliteTrackingEpoch epoch;
                epoch.time  = arcListRes.at(arcNo).at(j).time;
                epoch.range = epoch.rangeRate = epoch.rangeAcceleration = sumTotalP(j-i,k)/(arcCount/m);
                sstArc_1.push_back(epoch);
              }
              i = i + maxj-1;
            }
            else if(criteria < 0)
            {
              UInt maxj = waveLength;
              if (countSst - i < maxj)
                  maxj = countSst - i;
              for(UInt j=i; j< i+maxj; j++)
              {
                SatelliteTrackingEpoch epoch;
                epoch.time  = arcListRes.at(arcNo).at(j).time;
                epoch.range = epoch.rangeRate = epoch.rangeAcceleration = sumTotalN(j-i,k)/(arcCount/m);
                sstArc_1.push_back(epoch);
              }
              i = i + maxj-1;
            }
            else
            {
              SatelliteTrackingEpoch epoch;
              epoch.time  = arcListRes.at(arcNo).at(i).time;
              epoch.range = epoch.rangeRate = epoch.rangeAcceleration = 0;
              sstArc_1.push_back(epoch);
            }
          }
          else
          {
            SatelliteTrackingEpoch epoch;
            epoch.time  = arcListRes.at(arcNo).at(i).time;
            epoch.range = epoch.rangeRate = epoch.rangeAcceleration = 0;
            sstArc_1.push_back(epoch);
          }
        }
      }
      logStatus<<"write the output eclipse transit signal <"<<outNameEclipse<<">"<<Log::endl;
      InstrumentFile::write(outNameEclipse, sstArc_1);
    } //if (eclipseTransit)

    if(lowSnr)
    {
      InstrumentFile fileSnr(inNameSnr);
      InstrumentFile::checkArcCount({fileSst, fileSnr});
      std::vector<MiscValuesArc> arcListSnr;
      for(UInt arcNo=0; arcNo<arcCount; arcNo++)
      {
        arcListSnr.push_back( fileSnr.readArc(arcNo) );
        countSst = arcListRes.at(arcNo).size();
        for(UInt i=0; i<countSst; i++)
        {
          SatelliteTrackingEpoch epoch;
          epoch.time  = arcListRes.at(arcNo).at(i).time;
          epoch.range = epoch.rangeRate = epoch.rangeAcceleration = 0;
          if (arcListSnr.at(arcNo).at(i).values(2) < 590)
               epoch.range = epoch.rangeRate = epoch.rangeAcceleration = arcListRes.at(arcNo).at(i).rangeRate;
          sstArc_2.push_back(epoch);
        }
      }
      logStatus<<"write the output low SNR signal <"<<outNameSnr<<">"<<Log::endl;
      InstrumentFile::write(outNameSnr, sstArc_2);
    } //if (lowSnr)
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}
/***************************************/