File: instrumentStarCameraAngularAccelerometerFusion.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (801 lines) | stat: -rw-r--r-- 32,808 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
/***********************************************/
/**
* @file instrumentStarCameraAngularAccelerometerFusion.cpp
*
* @brief Estimation of the satellites orientation from star camera and angular accelerometer data.
*
* @author Beate Klinger
* @author Torsten Mayer-Guerr
* @date 2017-06-22
*/
/***********************************************/

// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program estimates the satellites orientation from star camera data
\configFile{inputfileStarCamera}{instrument} and angular accelerometer data
\configFile{inputfileAngularAcc}{instrument}. The combination of both observation types
is achieved in a least square adjustment. The optimal weighting between the two different
observation groups is achieved by means of VCE in combination with a robust estimator.
The system of linearized observation equations within the sensor fusion approach can be formulated as:
\begin{equation}
  \begin{bmatrix}
  \M l_{ACC1B}\\
  \M l_{SCA1B}
  \end{bmatrix}
  =
  \begin{bmatrix}
  \M A_{ACC1B} & \M B_{ACC1B}\\
  \M A_{SCA1B} & \M 0
  \end{bmatrix}
  \begin{bmatrix}
  \M q\\
  \M b
  \end{bmatrix}
  =
  \begin{bmatrix}
  \frac{\partial \dot{\boldsymbol{\omega}}}{\partial \M q} & \frac{\partial \dot{\boldsymbol{\omega}}}{\partial \M b}\\
  \M I & \M 0
  \end{bmatrix}
  \begin{bmatrix}
  \M q\\
  \M b
  \end{bmatrix}
\end{equation}
with
\begin{equation}\begin{split}
  \M l_{ACC1B}  &= \dot{\boldsymbol{\omega}}_{ACC1B} - \dot{\boldsymbol{\omega}}_{0}, \\
  \M l_{SCA1B}  &= \M q_{SCA1B} - \M q_{0}, \\
  \M q_{Fusion} &= \M q + \M q_{0}.
\end{split}\end{equation}
The reference values $\M q_{0}$ and $\dot{\boldsymbol{\omega}}_{0}$ are derived
from \configFile{inputfileStarCameraReference}{instrument}. In the course of the estimation,
the accelerometer data is calibrated, by setting a bias factor $\M b$ with \config{accBias}.
)";

/***********************************************/

#include "programs/program.h"
#include "parallel/matrixDistributed.h"
#include "files/fileMatrix.h"
#include "files/fileInstrument.h"
#include "misc/varianceComponentEstimation.h"
#include "classes/parametrizationTemporal/parametrizationTemporal.h"

/***** CLASS ***********************************/

/** @brief Estimation of the satellites orientation from star camera and angular accelerometer data.
* @ingroup programsGroup */
class InstrumentStarCameraAngularAccelerometerFusion
{
public:

  class ArcObservation
  {
  public:
    StarCameraArc    starCamera;
    Covariance3dArc  starCameraCovariance;
    AccelerometerArc angularAcc;
    MiscValueArc     epochSigmaSca, epochSigmaAcc;
    Vector           sigmaSca, sigmaAcc;
    Vector           x;
  };

  FileName                   fileNameOutStarCamera;
  FileName                   fileNameOutCovariance;
  FileName                   fileNameOutCovarianceMatrix;
  FileName                   fileNameOutAngularAcc;
  FileName                   fileNameOutEpochSigmasStarCamera;
  FileName                   fileNameOutEpochSigmasAccelerometer;
  InstrumentFile             starCamera0File;
  std::vector<Time>          timesSca;
  Matrix                     quaternionSca;
  Covariance3dArc            starCameraCovariance;
  std::vector<Time>          timesAcc;
  AccelerometerArc           angularAcc;
  Bool                       correctAccNonSquare;
  ParametrizationTemporalPtr accBias, accScale;
  Bool                       perAxisSca, perAxisAcc;
  Double                     sigmaSca0;
  Double                     sigmaAccX, sigmaAccY, sigmaAccZ;
  Double                     huber, huberPower;
  UInt                       degree;
  Matrix                     P; // polynomial interpolation
  UInt                       iterCount;


  Bool           index(const Time &time, std::vector<Time> &times, UInt &idx) const;
  ArcObservation computeArc(UInt arc);
  static Vector  computeRedundancy(std::vector<Matrix> &A, MatrixDistributed &normals, Double threshold=1e-4);
  static void    estimateAccuracy(std::vector<Vector> &e, std::vector<Vector> &redundancy, Bool sigmaPerAxis, Double huber, Double huberPower, Vector &sigmaAxis, Vector &sigmaEpoch);

  void run(Config &config, Parallel::CommunicatorPtr comm);
};

GROOPS_REGISTER_PROGRAM(InstrumentStarCameraAngularAccelerometerFusion, PARALLEL, "estimation of the satellites orientation from star camera and angular accelerometer data.", Grace, Instrument)

/***********************************************/

template<> void save(OutArchive &oa, const InstrumentStarCameraAngularAccelerometerFusion::ArcObservation &arc)
{
  oa<<nameValue("starCamera",           arc.starCamera);
  oa<<nameValue("starCameraCovariance", arc.starCameraCovariance);
  oa<<nameValue("angularAcc",           arc.angularAcc);
  oa<<nameValue("sigmaSca",             arc.sigmaSca);
  oa<<nameValue("sigmaAcc",             arc.sigmaAcc);
  oa<<nameValue("epochSigmaSca",        arc.epochSigmaSca);
  oa<<nameValue("epochSigmaAcc",        arc.epochSigmaAcc);
  oa<<nameValue("x",                    arc.x);
}

template<> void load(InArchive  &ia, InstrumentStarCameraAngularAccelerometerFusion::ArcObservation &arc)
{
  ia>>nameValue("starCamera",           arc.starCamera);
  ia>>nameValue("starCameraCovariance", arc.starCameraCovariance);
  ia>>nameValue("angularAcc",           arc.angularAcc);
  ia>>nameValue("sigmaSca",             arc.sigmaSca);
  ia>>nameValue("sigmaAcc",             arc.sigmaAcc);
  ia>>nameValue("epochSigmaSca",        arc.epochSigmaSca);
  ia>>nameValue("epochSigmaAcc",        arc.epochSigmaAcc);
  ia>>nameValue("x",                    arc.x);
}

/***********************************************/

void InstrumentStarCameraAngularAccelerometerFusion::run(Config &config, Parallel::CommunicatorPtr comm)
{
  try
  {
    FileName fileNameOutSolution;
    FileName fileNameStarCamera0;
    FileName fileNameStarCamera, fileNameStarCameraCov, fileNameAngularAcc;

    readConfig(config, "outputfileStarCamera",              fileNameOutStarCamera,               Config::MUSTSET,  "",      "combined quaternions");
    readConfig(config, "outputfileCovariance",              fileNameOutCovariance,               Config::OPTIONAL, "",      "epoch-wise covariance matrix");
    readConfig(config, "outputfileCovarianceMatrix",        fileNameOutCovarianceMatrix,         Config::OPTIONAL, "",      "full arc-wise covariance matrix per arc. arc number is appended to filename");
    readConfig(config, "outputfileEpochSigmaStarCamera",    fileNameOutEpochSigmasStarCamera,    Config::OPTIONAL, "",      "from vce and outlier detection");
    readConfig(config, "outputfileEpochSigmaAccelerometer", fileNameOutEpochSigmasAccelerometer, Config::OPTIONAL, "",      "from vce and outlier detection");
    readConfig(config, "outputfileAngularAcc",              fileNameOutAngularAcc,               Config::OPTIONAL, "",      "angular acceleration observations (bias removed)");
    readConfig(config, "outputfileSolution",                fileNameOutSolution,                 Config::OPTIONAL, "",      "estimated parameter (one column for each arc)");
    readConfig(config, "inputfileStarCameraReference",      fileNameStarCamera0,                 Config::MUSTSET,  "",      "quaternions as taylor point");
    readConfig(config, "inputfileStarCamera",               fileNameStarCamera,                  Config::MUSTSET,  "",      "star camera observations");
    readConfig(config, "inputfileStarCameraCovariance",     fileNameStarCameraCov,               Config::OPTIONAL, "",      "star camera observations");
    readConfig(config, "inputfileAngularAcc",               fileNameAngularAcc,                  Config::MUSTSET,  "",      "angular acceleration observations");
    readConfig(config, "correctAccNonQuadratic",            correctAccNonSquare,                 Config::DEFAULT,  "1",     "apply correction (non-square proof mass)");
    readConfig(config, "accBias",                           accBias,                             Config::DEFAULT,  "",      "accelerometer bias per interval and axis");
    readConfig(config, "accScale",                          accScale,                            Config::DEFAULT,  "",      "accelerometer scale per interval and axis");
    readConfig(config, "sigmaStarcamera",                   sigmaSca0,                           Config::DEFAULT,  "1.",    "[rad]");
    readConfig(config, "sigmaAccelerometerX",               sigmaAccX,                           Config::DEFAULT,  "10e-7", "[rad/s^2]");
    readConfig(config, "sigmaAccelerometerY",               sigmaAccY,                           Config::DEFAULT,  "2e-7",  "[rad/s^2]");
    readConfig(config, "sigmaAccelerometerZ",               sigmaAccZ,                           Config::DEFAULT,  "2e-7",  "[rad/s^2]");
    readConfig(config, "estimateSigmaScaPerAxis",           perAxisSca,                          Config::DEFAULT,  "0",     "separate variance factor for roll, pitch, yaw, instead of one common factor.""");
    readConfig(config, "estimateSigmaAccPerAxis",           perAxisAcc,                          Config::DEFAULT,  "1",     "separate variance factor for each accelerometer axis, instead of one common factor.");
    readConfig(config, "huber",                             huber,                               Config::DEFAULT,  "2.5",   "residuals > huber*sigma0 are downweighted");
    readConfig(config, "huberPower",                        huberPower,                          Config::DEFAULT,  "1.5",   "residuals > huber: sigma=(e/huber)^power*sigma0");
    readConfig(config, "interpolationDegree",               degree,                              Config::DEFAULT,  "2",     "");
    readConfig(config, "iterationCount",                    iterCount,                           Config::DEFAULT,  "15",    "non linear equation solved iteratively");
    if(isCreateSchema(config)) return;

    // Read instruments
    // ----------------
    StarCameraArc starCamera = InstrumentFile::read(fileNameStarCamera);
    starCameraCovariance     = InstrumentFile::read(fileNameStarCameraCov);
    Arc::checkSynchronized({starCamera, starCameraCovariance});
    angularAcc               = InstrumentFile::read(fileNameAngularAcc);
    timesSca                 = starCamera.times();
    quaternionSca            = starCamera.matrix().column(1,4); // without time
    timesAcc                 = angularAcc.times();

    // polynomial interpolation matrix
    // -------------------------------
    P = Matrix(degree+1, degree+1);
    for(UInt i=0; i<P.rows(); i++)
    {
      P(0,i) = 1.0;
      for(UInt n=1; n<P.columns(); n++)
        P(n,i) = (i-degree/2.) * P(n-1,i);
    }
    inverse(P);

    // computing quaternions
    // ---------------------
    logStatus<<"computing quaternions"<<Log::endl;
    starCamera0File.open(fileNameStarCamera0);
    std::vector<ArcObservation> arcs(starCamera0File.arcCount());
    Parallel::forEach(arcs, [this] (UInt arcNo) {return computeArc(arcNo);}, comm);

    if(Parallel::isMaster(comm))
    {
      for(UInt arcNo=0; arcNo<arcs.size(); arcNo++)
        logInfo<<"  "<<arcNo%"%2i. arc "s
               <<"sigmaScaX = "<<arcs.at(arcNo).sigmaSca(0)%"%8.2e, "s
               <<"sigmaScaY = "<<arcs.at(arcNo).sigmaSca(1)%"%8.2e, "s
               <<"sigmaScaZ = "<<arcs.at(arcNo).sigmaSca(2)%"%8.2e, "s
               <<"sigmaAccX = "<<arcs.at(arcNo).sigmaAcc(0)%"%8.2e, "s
               <<"sigmaAccY = "<<arcs.at(arcNo).sigmaAcc(1)%"%8.2e, "s
               <<"sigmaAccZ = "<<arcs.at(arcNo).sigmaAcc(2)%"%8.2e"s<<Log::endl;
    }

    if(Parallel::isMaster(comm) && !fileNameOutStarCamera.empty())
    {
      logStatus<<"write starCamera file <"<<fileNameOutStarCamera<<">"<<Log::endl;
      std::vector<Arc> arcList(arcs.size());
      for(UInt arcNo=0; arcNo<arcs.size(); arcNo++)
        arcList.at(arcNo) = arcs.at(arcNo).starCamera;
      InstrumentFile::write(fileNameOutStarCamera, arcList);
    }

    if(Parallel::isMaster(comm) && !fileNameOutCovariance.empty())
    {
      logStatus<<"write covariance file <"<<fileNameOutCovariance<<">"<<Log::endl;
      std::vector<Arc> arcList(arcs.size());
      for(UInt arcNo=0; arcNo<arcs.size(); arcNo++)
        arcList.at(arcNo) = arcs.at(arcNo).starCameraCovariance;
      InstrumentFile::write(fileNameOutCovariance, arcList);
    }

    if(Parallel::isMaster(comm) && !fileNameOutAngularAcc.empty())
    {
      logStatus<<"write angular acceleration file <"<<fileNameOutAngularAcc<<">"<<Log::endl;
      std::vector<Arc> arcList(arcs.size());
      for(UInt arcNo=0; arcNo<arcs.size(); arcNo++)
        arcList.at(arcNo) = arcs.at(arcNo).angularAcc;
      InstrumentFile::write(fileNameOutAngularAcc, arcList);
    }

    if(Parallel::isMaster(comm) && !fileNameOutSolution.empty())
    {
      logStatus<<"write solution file <"<<fileNameOutSolution<<">"<<Log::endl;
      Matrix x(arcs.at(0).x.rows(), arcs.size());
      for(UInt arcNo=0; arcNo<arcs.size(); arcNo++)
        copy(arcs.at(arcNo).x, x.column(arcNo));
      writeFileMatrix(fileNameOutSolution, x);
    }

    if(Parallel::isMaster(comm) && !fileNameOutEpochSigmasStarCamera.empty())
    {
      logStatus<<"write star camera epoch sigmas to file <"<<fileNameOutEpochSigmasStarCamera<<">"<<Log::endl;
      std::vector<Arc> arcList(arcs.size());
      for(UInt arcNo=0; arcNo<arcs.size(); arcNo++)
        arcList.at(arcNo) = arcs.at(arcNo).epochSigmaSca;
      InstrumentFile::write(fileNameOutEpochSigmasStarCamera, arcList);
    }

    if(Parallel::isMaster(comm) && !fileNameOutEpochSigmasAccelerometer.empty())
    {
      logStatus<<"write accelerometer epoch sigmas to file <"<<fileNameOutEpochSigmasAccelerometer<<">"<<Log::endl;
      std::vector<Arc> arcList(arcs.size());
      for(UInt arcNo=0; arcNo<arcs.size(); arcNo++)
        arcList.at(arcNo) = arcs.at(arcNo).epochSigmaAcc;
      InstrumentFile::write(fileNameOutEpochSigmasAccelerometer, arcList);
    }

  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

Bool InstrumentStarCameraAngularAccelerometerFusion::index(const Time &time, std::vector<Time> &times, UInt &idx) const
{
  try
  {
    const Time timeMargin = seconds2time(1e-5);
    // search time slot
    while((idx < times.size()) && (times.at(idx)+timeMargin < time))
      idx++;
    if(idx >= times.size())
      return FALSE;
    if(times.at(idx)-timeMargin > time)
      return FALSE;
    return TRUE;
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

InstrumentStarCameraAngularAccelerometerFusion::ArcObservation InstrumentStarCameraAngularAccelerometerFusion::computeArc(UInt arcNo)
{
  try
  {
    const StarCameraArc     starCamera0 = starCamera0File.readArc(arcNo);
    const std::vector<Time> times       = starCamera0.times();
    const UInt              epochCount  = starCamera0.size();
    const Double            dt          = medianSampling(times).seconds();

    // approximate values
    // ------------------
    Matrix q = starCamera0.matrix().column(1,4);
    // check sign
    UInt idxSca = 0;
    for(UInt i=0; i<epochCount; i++)
      if(index(times.at(i), timesSca, idxSca))
        if(inner(quaternionSca.row(idxSca), q.row(i)) < 0)
        {
          q *= -1;
          break;
        }

    // accelerometer calibration
    // -------------------------
    accBias->setInterval (times.at(0), times.back()+seconds2time(dt), TRUE/*estimatePerArc*/);
    accScale->setInterval(times.at(0), times.back()+seconds2time(dt), TRUE/*estimatePerArc*/);

    UInt countAccCal = 0;
    const UInt idxAccBias  = countAccCal; countAccCal += 3 * accBias->parameterCount();
    const UInt idxAccScale = countAccCal; countAccCal += 3 * accScale->parameterCount();

    // epoch wise sigmas
    // -----------------
    Vector sigmaAxisSca = {sigmaSca0, sigmaSca0, sigmaSca0};
    Vector sigmaEpochSca(epochCount);
    for(UInt i=0; i<epochCount; i++)
      sigmaEpochSca(i) = 1.;

    Vector sigmaAxisAcc = {sigmaAccX, sigmaAccY, sigmaAccZ};
    Vector sigmaEpochAcc(epochCount);
    for(UInt i=0; i<epochCount; i++)
      sigmaEpochAcc(i) = 1.;

    // normal equations (kite structure)
    // ---------------------------------
    Double lPl      = 0;
    UInt   obsCount = 0;
    Vector n(3*epochCount+countAccCal);
    Vector xAccCal(countAccCal);

    std::vector<UInt> blockIndex(1, 0);
    for(UInt i=0; i<epochCount; i++)
      blockIndex.push_back( blockIndex.back()+3 );

    const UInt idxBlockCal = epochCount;
    if(countAccCal)
      blockIndex.push_back( blockIndex.back()+countAccCal );

    MatrixDistributed normals;
    normals.initEmpty(blockIndex, Parallel::selfCommunicator());
    const UInt blockCount = normals.blockCount();
    for(UInt i=0; i<epochCount; i++)
      normals.setBlock(i, i);

    // =============================================

    Double sigma0 = 1.;
    std::vector<Bool> hasSca(epochCount, FALSE);
    std::vector<Bool> hasAcc(epochCount, FALSE);
    for(UInt iter=0; iter<iterCount; iter++)
    {
      // init normal equations
      // ---------------------
      normals.setNull();
      n.setNull();
      lPl      = 0;
      obsCount = 0;

      std::vector<Matrix> Q(epochCount);
      for(UInt i=0; i<epochCount; i++)
        Q.at(i) = {{-q(i,1),  q(i,0),  q(i,3), -q(i,2)},
                   {-q(i,2), -q(i,3),  q(i,0),  q(i,1)},
                   {-q(i,3),  q(i,2), -q(i,1),  q(i,0)}};

      // star camera observations
      // ------------------------
      std::vector<Matrix> scaA(epochCount);
      std::vector<Vector> scaL(epochCount);
      UInt                idxSca = 0;
      for(UInt i=0; i<epochCount; i++)
        if(index(times.at(i), timesSca, idxSca))
        {
          hasSca.at(i) = TRUE;

          scaA.at(i) = identityMatrix(3);
          scaL.at(i) = 2*Q.at(i)*quaternionSca.row(idxSca).trans();

          // decorrelation
          Matrix W = (starCameraCovariance.size()) ? starCameraCovariance.at(idxSca).covariance.matrix() : identityMatrix(3, Matrix::SYMMETRIC);
          cholesky(W);
          for(UInt idAxis=0; idAxis<3; idAxis++)
            W.column(idAxis) *= sigmaEpochSca(i)*sigmaAxisSca(idAxis);
          triangularSolve(1., W.trans(), scaA.at(i));
          triangularSolve(1., W.trans(), scaL.at(i));

          matMult(1., scaA.at(i).trans(), scaL.at(i), n.row(normals.blockIndex(i), normals.blockSize(i)));
          rankKUpdate(1., scaA.at(i), normals.N(i,i));
          lPl      += quadsum(scaL.at(i));
          obsCount += scaL.at(i).rows();
        } // for(i=epochCount)

      // angular accelerations observations
      // ----------------------------------
      std::vector<UInt>                accIdxA(epochCount); // start of A matrix
      std::vector<std::vector<Matrix>> accA(epochCount);    // quaternions
      std::vector<Matrix>              accB(epochCount);    // bias & scale
      std::vector<Vector>              accL(epochCount);
      UInt                             idxAcc = 0;
      for(UInt i=0; i<epochCount; i++)
        if(index(times.at(i), timesAcc, idxAcc))
        {
          hasAcc.at(i) = TRUE;

          // polynomial 2nd differentiation
          const UInt idx = std::min(std::max(i, degree/2)-degree/2, epochCount-degree-1); // interval
          Vector factors = Vector(degree+1);  // derivation coefficients
          const Double tau = i-idx-degree/2.;
          Double f = 1./(dt*dt);
          for(UInt n=2; n<factors.rows(); n++)
          {
            axpy(n*(n-1)*f, P.column(n), factors);
            f *= tau;
          }

          // reduced observations
          accL.at(i) = angularAcc.at(idxAcc).acceleration.vector();
          for(UInt k=0; k<factors.size(); k++)
            matMult(-2*factors(k), Q.at(i), q.row(idx+k).trans(), accL.at(i));

          if(correctAccNonSquare)
          {
            // polynomial differentiation
            UInt idxRate = std::min(std::max(i, UInt(1))-1, epochCount-2);
            std::vector<Double> factorsRate = {-1/dt, 0, 1/dt};
            if((i == 0) || (i == epochCount-1))
              factorsRate = {-1/dt, 1/dt};

            Vector angularRate(3);
            for(UInt k=0; k<factorsRate.size(); k++)
              matMult(2*factorsRate.at(k), Q.at(i), q.row(idxRate+k).trans(), angularRate);

            const Double Ix = 1.037e-5;
            const Double Iy = 1.959e-5;
            const Double Iz = Ix;
            accL.at(i)(0) -= (Iz-Iy)/Ix * angularRate(2) * angularRate(1);
            accL.at(i)(1) -= (Iz-Ix)/Iy * angularRate(2) * angularRate(0);
            accL.at(i)(2) -= (Iy-Ix)/Iz * angularRate(1) * angularRate(0);
          }

          // dacc(i)/dq(k)
          accIdxA.at(i) = idx;
          accA.at(i).resize(factors.size());
          for(UInt k=0; k<factors.size(); k++) // w_dot(i) = sum_k factor(k) alpha(k)
            accA.at(i).at(k) = factors(k) * identityMatrix(3);

          // calibration parameter
          accB.at(i) = Matrix(3, countAccCal);
          if(accBias->parameterCount())
            accBias->designMatrix(times.at(i), identityMatrix(3), accB.at(i).column(idxAccBias, 3*accBias->parameterCount()));
          if(accScale->parameterCount())
          {
            Matrix S(3, 3);
            S(0, 0) = angularAcc.at(idxAcc).acceleration.x();
            S(1, 1) = angularAcc.at(idxAcc).acceleration.y();
            S(2, 2) = angularAcc.at(idxAcc).acceleration.z();
            accScale->designMatrix(times.at(i), S, accB.at(i).column(idxAccScale, S.columns()*accScale->parameterCount()));
          }

          // decorrelation
          for(UInt idAxis=0; idAxis<3; idAxis++)
          {
            accL.at(i)(idAxis) *= 1./(sigmaEpochAcc(i)*sigmaAxisAcc(idAxis));
            for(UInt k=0; k<accA.at(i).size(); k++)
              accA.at(i).at(k).row(idAxis) *= 1./(sigmaEpochAcc(i)*sigmaAxisAcc(idAxis));
            if(accB.at(i).size())
              accB.at(i).row(idAxis) *= 1./(sigmaEpochAcc(i)*sigmaAxisAcc(idAxis));
          }

          // accumulate normals
          for(UInt k=0; k<factors.size(); k++)
          {
            matMult(1., accA.at(i).at(k).trans(), accL.at(i), n.row(normals.blockIndex(idx+k), normals.blockSize(idx+k)));
            rankKUpdate(1., accA.at(i).at(k), normals.N(idx+k, idx+k));     // N11(i)
            for(UInt j=k+1; j<factors.size(); j++)                          // N11(i), secondary diagonal
            {
              normals.setBlock(idx+k, idx+j);
              matMult(1., accA.at(i).at(k).trans(), accA.at(i).at(j), normals.N(idx+k, idx+j));
            }
            if(accB.at(i).size())
            {
              normals.setBlock(idx+k, idxBlockCal);
              matMult(1., accA.at(i).at(k).trans(), accB.at(i), normals.N(idx+k, idxBlockCal)); // N12(i)
            }
          }
          if(accB.at(i).size())
          {
            normals.setBlock(idxBlockCal, idxBlockCal);
            matMult(1., accB.at(i).trans(), accL.at(i), n.row(normals.blockIndex(idxBlockCal), normals.blockSize(idxBlockCal))); // n2
            rankKUpdate(1., accB.at(i), normals.N(idxBlockCal, idxBlockCal)); // N22
          }
          lPl += quadsum(accL.at(i));
          obsCount += accL.at(i).rows();
        } // for(i=epochCount)

      // regularize epochs without SCA
      // -----------------------------
      for(UInt i=0; i<epochCount; i++)
        if(!hasSca.at(i))
        {
          const Double sigma = 0.25*DEG2RAD;
          axpy(1./(sigma*sigma), identityMatrix(3), normals.N(i,i));
        }

      // Solve
      // -----
      const Vector dx = normals.solve(n, FALSE/*timing*/);
      const Double sigma0Old = sigma0;
      sigma0 = sqrt((lPl-inner(dx,n))/(obsCount-dx.rows()));
      if(countAccCal)
        xAccCal += dx.row(normals.blockIndex(idxBlockCal), normals.blockSize(idxBlockCal));

      // update approximate values
      // -------------------------
      for(UInt i=0; i<epochCount; i++)
      {
        matMult(0.5, Q.at(i).trans(), dx.row(normals.blockIndex(i), normals.blockSize(i)), q.row(i).trans());
        q.row(i) *= 1./norm(q.row(i));
      }

      // remove calibration parameter
      // ----------------------------
      if(countAccCal)
      {
        UInt idxAcc = 0;
        for(UInt i=0; i<epochCount; i++)
          if(index(times.at(i), timesAcc, idxAcc))
          {
            Vector accCal = accB.at(i) * dx.row(normals.blockIndex(idxBlockCal), normals.blockSize(idxBlockCal));
            angularAcc.at(idxAcc).acceleration.x() -= (sigmaEpochAcc(i)*sigmaAxisAcc(0)) * accCal(0);
            angularAcc.at(idxAcc).acceleration.y() -= (sigmaEpochAcc(i)*sigmaAxisAcc(1)) * accCal(1);
            angularAcc.at(idxAcc).acceleration.z() -= (sigmaEpochAcc(i)*sigmaAxisAcc(2)) * accCal(2);
          }
      }

      // Accuracy & outlier detection (star camera)
      // ------------------------------------------
      {
        std::vector<Vector> e(epochCount);
        std::vector<Vector> redundancy(epochCount);
        std::vector<Matrix> A(epochCount+1);
        for(UInt i=0; i<epochCount; i++)
          if(scaL.at(i).size())
          {
            // decorrelated residuals
            e.at(i) = scaL.at(i);
            matMult(-1, scaA.at(i), dx.row(normals.blockIndex(i), normals.blockSize(i)), e.at(i));

            // redundancy
            A.at(i) = scaA.at(i);
            redundancy.at(i) = computeRedundancy(A, normals);
            A.at(i) = Matrix();
          } // for(i=epochCount)

        estimateAccuracy(e, redundancy, perAxisSca, huber, huberPower, sigmaAxisSca, sigmaEpochSca);
      }

      // Accuracy & outlier detection (accelerometer)
      // --------------------------------------------
      {
        std::vector<Vector> e(epochCount);
        std::vector<Vector> redundancy(epochCount);
        std::vector<Matrix> A(epochCount+1);
        for(UInt i=0; i<epochCount; i++)
          if(accL.at(i).size())
          {
            // decorrelated residuals
            e.at(i) = accL.at(i);
            for(UInt k=0; k<accA.at(i).size(); k++)
              matMult(-1, accA.at(i).at(k), dx.row(normals.blockIndex(accIdxA.at(i)+k), normals.blockSize(accIdxA.at(i)+k)), e.at(i));
            if(countAccCal)
              matMult(-1., accB.at(i), dx.row(normals.blockIndex(idxBlockCal), normals.blockSize(idxBlockCal)), e.at(i));

            // redundancy
            for(UInt k=0; k<accA.at(i).size(); k++)
              A.at(accIdxA.at(i)+k) = accA.at(i).at(k);
            A.back() = accB.at(i);
            redundancy.at(i) = computeRedundancy(A, normals);
            for(UInt k=0; k<accA.at(i).size(); k++)
              A.at(accIdxA.at(i)+k) = Matrix();
          } // for(i=epochCount)

        estimateAccuracy(e, redundancy, perAxisAcc, huber, huberPower, sigmaAxisAcc, sigmaEpochAcc);
      }

      // convergence criteria
      // --------------------
      if(fabs(sigma0-sigma0Old)<1e-5)
        break;
    } // for(iter)

    //=================================

    // full variance covariance matrix
    Matrix C;
    if(!fileNameOutCovariance.empty() || !fileNameOutCovarianceMatrix.empty())
    {
      C = Matrix(normals.blockIndex(blockCount), Matrix::TRIANGULAR, Matrix::UPPER);
      for(UInt i=0; i<blockCount; i++)
        for(UInt k=i; k<blockCount; k++)
          if(normals.isBlockUsed(i, k))
            copy(normals.N(i,k), C.slice(normals.blockIndex(i), normals.blockIndex(k), normals.blockSize(i), normals.blockSize(k)));
      cholesky2Inverse(C);
      C *= sigma0 * sigma0;
    }

    if(!fileNameOutCovarianceMatrix.empty())
      writeFileMatrix(fileNameOutCovarianceMatrix.appendBaseName(".arc"+arcNo%"%03i"s), C.slice(0,0,3*epochCount,3*epochCount));

    // Results
    ArcObservation arc;
    arc.sigmaSca = sigmaAxisSca;
    arc.sigmaAcc = sigmaAxisAcc;
    arc.x        = xAccCal;

    // star camera arc
    if(!fileNameOutStarCamera.empty())
      for(UInt i=0; i<epochCount; i++)
        if(hasAcc.at(i) || hasSca.at(i))
        {
          StarCameraEpoch epoch;
          epoch.time   = times.at(i);
          epoch.rotary = Rotary3d(q.row(i).trans());
          arc.starCamera.push_back(epoch);
        }

    // star camera covariance arc
    if(!fileNameOutCovariance.empty())
    {
      for(UInt i=0; i<epochCount; i++)
        if(hasAcc.at(i) || hasSca.at(i))
        {
          Covariance3dEpoch epoch;
          epoch.time       = times.at(i);
          epoch.covariance = Tensor3d(C.slice(3*i,3*i,3,3));
          arc.starCameraCovariance.push_back(epoch);
        }
    }

    // angular acceleration observation (calibrated)
    if(!fileNameOutAngularAcc.empty())
    {
      UInt idxAcc = 0;
      for(UInt i=0; i<epochCount; i++)
        if(index(times.at(i), timesAcc, idxAcc))
          arc.angularAcc.push_back(angularAcc.at(idxAcc));
    }

    // star Camera epoch sigmas
    if(!fileNameOutEpochSigmasStarCamera.empty())
    {
      for(UInt i=0; i<epochCount; i++)
        if(hasSca.at(i))
        {
          MiscValueEpoch epoch;
          epoch.time  = times.at(i);
          epoch.value = sigmaEpochSca(i);
          arc.epochSigmaSca.push_back(epoch);
        }
    }

    // accelerometer epoch sigmas
    if(!fileNameOutEpochSigmasAccelerometer.empty())
    {
      for(UInt i=0; i<epochCount; i++)
        if(hasAcc.at(i))
        {
          MiscValueEpoch epoch;
          epoch.time  = times.at(i);
          epoch.value = sigmaEpochAcc(i);
          arc.epochSigmaAcc.push_back(epoch);
        }
    }

    return arc;
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

Vector InstrumentStarCameraAngularAccelerometerFusion::computeRedundancy(std::vector<Matrix> &A, MatrixDistributed &normals, Double threshold)
{
  try
  {
    Vector redundancy = {1., 1., 1.};
    for(UInt i=0; i<normals.blockCount()-1; i++)
      if(A.at(i).size())
      {
        triangularSolve(1., normals.N(i,i).trans(), A.at(i).trans());
        for(UInt idAxis=0; idAxis<3; idAxis++)
          redundancy(idAxis) -= quadsum(A.at(i).row(idAxis));
        for(UInt k=i+1; k<normals.blockCount(); k++)
          if(normals.isBlockUsed(i,k))
          {
            if(!A.at(k).size())
              A.at(k) = Matrix(A.at(i).rows(), normals.blockSize(k));
            matMult(-1., A.at(i), normals.N(i,k), A.at(k));
          }
        if(quadsum(A.at(i)) < threshold)
          break;
      }
    if(normals.isBlockUsed(normals.blockCount()-1, normals.blockCount()-1) && A.back().size())
    {
      triangularSolve(1., normals.N(normals.blockCount()-1,normals.blockCount()-1).trans(), A.back().trans());
      for(UInt idAxis=0; idAxis<3; idAxis++)
        redundancy(idAxis) -= quadsum(A.back().row(idAxis));
    }

    return redundancy;
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

void InstrumentStarCameraAngularAccelerometerFusion::estimateAccuracy(std::vector<Vector> &e, std::vector<Vector> &redundancy,
                                                                      Bool sigmaPerAxis, Double huber, Double huberPower,
                                                                      Vector &sigmaAxis, Vector &sigmaEpoch)
{
  try
  {
    // total accuracy
    Double ePe_sum       = 0;
    Double redundany_sum = 0;
    for(UInt idAxis=0; idAxis<3; idAxis++)
    {
      for(UInt i=0; i<e.size(); i++)
        if(redundancy.at(i).size() && (sigmaEpoch(i) <= 1))
        {
          ePe_sum       += std::pow(e.at(i)(idAxis)/sigmaEpoch(i), 2);
          redundany_sum += redundancy.at(i)(idAxis);
        }

      if(sigmaPerAxis)
      {
        Double factor = Vce::standardDeviation(ePe_sum, redundany_sum, huber, huberPower);
        for(UInt i=0; i<e.size(); i++)
          if(redundancy.at(i).size())
            e.at(i)(idAxis) *= 1./factor;
        sigmaAxis(idAxis) *= factor;
        ePe_sum = redundany_sum = 0;
      }
    }

    if(!sigmaPerAxis)
    {
      Double factor = Vce::standardDeviation(ePe_sum, redundany_sum, huber, huberPower);
      for(UInt i=0; i<e.size(); i++)
        if(redundancy.at(i).size())
          e.at(i) *= 1/factor;
      for(UInt idAxis=0; idAxis<3; idAxis++)
        sigmaAxis(idAxis) *= factor;
    }

    // Outlier detection
    for(UInt i=0; i<e.size(); i++)
      if(redundancy.at(i).size())
      {
        const Double s = sigmaEpoch(i)*std::sqrt(quadsum(e.at(i))/(3*mean(redundancy.at(i))));
        sigmaEpoch(i) = 1;
        if((s > huber) && (mean(redundancy.at(i))>1e-3))
          sigmaEpoch(i) = std::pow(s/huber, huberPower);
      }
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/