1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
/***********************************************/
/**
* @file gravityfield2DegreeAmplitudes.cpp
*
* @brief Computes degree amplitudes of a gravity field.
*
* @author Andreas Kvas
* @date 2020-01-18
*/
/***********************************************/
// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program computes degree amplitudes from a \configClass{gravityfield}{gravityfieldType}
and saves them to a \file{matrix}{matrix} file with three columns: the degree, the degree amplitude, and the formal errors.
The coefficients can be converted to different functionals with \configClass{kernel}{kernelType}.
The gravity field can be evaluated at different altitudes by specifying \config{evaluationRadius}.
Polar regions can be excluded by setting \config{polarGap}.
If set the expansion is limited in the range between \config{minDegree}
and \config{maxDegree} inclusivly.
The coefficients are related to the reference radius~\config{R}
and the Earth gravitational constant \config{GM}.
See also \program{PotentialCoefficients2DegreeAmplitudes}.
)";
/***********************************************/
#include "programs/program.h"
#include "files/fileMatrix.h"
#include "classes/gravityfield/gravityfield.h"
/***** CLASS ***********************************/
/** @brief Computes degree amplitudes of a gravity field.
* @ingroup programsGroup */
class Gravityfield2DegreeAmplitudes
{
public:
void run(Config &config, Parallel::CommunicatorPtr comm);
};
GROOPS_REGISTER_PROGRAM(Gravityfield2DegreeAmplitudes, SINGLEPROCESS, "computes degree amplitudes of a gravity field", Gravityfield, PotentialCoefficients)
/***********************************************/
void Gravityfield2DegreeAmplitudes::run(Config &config, Parallel::CommunicatorPtr /*comm*/)
{
try
{
enum DegreeType {RMS, CUMMULATE, MEDIAN};
DegreeType degreeType = RMS;
FileName fileNameCoeff;
UInt minDegree, maxDegree = INFINITYDEGREE;
Time time;
Double GM, R;
Double evalRadius = NAN_EXPR;
GravityfieldPtr gravityfield;
KernelPtr kernel;
Angle gap;
readConfig(config, "outputfileMatrix", fileNameCoeff, Config::MUSTSET, "", "three column matrix with degree, signal amplitude, formal error");
readConfig(config, "gravityfield", gravityfield, Config::MUSTSET, "", "");
readConfig(config, "kernel", kernel, Config::MUSTSET, "", "");
std::string choice;
if(readConfigChoice(config, "type", choice, Config::MUSTSET, "", "type of variances"))
{
if(readConfigChoiceElement(config, "rms", choice, "degree amplitudes (square root of degree variances)")) degreeType = RMS;
if(readConfigChoiceElement(config, "accumulation", choice, "cumulate variances over degrees")) degreeType = CUMMULATE;
if(readConfigChoiceElement(config, "median", choice, "median of absolute values per degree")) degreeType = MEDIAN;
endChoice(config);
}
readConfig(config, "time", time, Config::OPTIONAL, "", "at this time the gravity field will be evaluated");
readConfig(config, "evaluationRadius", evalRadius, Config::OPTIONAL, "", "evaluate the gravity field at this radius (default: evaluate at surface");
readConfig(config, "polarGap", gap, Config::DEFAULT, "0.0", "exclude polar regions (aperture angle in degrees)");
readConfig(config, "minDegree", minDegree, Config::DEFAULT, "0", "");
readConfig(config, "maxDegree", maxDegree, Config::OPTIONAL, "", "");
readConfig(config, "GM", GM, Config::DEFAULT, STRING_DEFAULT_GM, "Geocentric gravitational constant");
readConfig(config, "R", R, Config::DEFAULT, STRING_DEFAULT_R, "reference radius");
if(isCreateSchema(config)) return;
// Check input
// -----------
if(maxDegree<minDegree)
throw(Exception("Maximum degree lower than minimum degree (" + maxDegree%"%i"s + " vs. " + minDegree%"%i"s + ")."));
if(std::isnan(evalRadius)) evalRadius = R;
// Create potential coefficients
// -----------------------------
logStatus<<"create spherical harmonics"<<Log::endl;
SphericalHarmonics harm = gravityfield->sphericalHarmonics(time, maxDegree, minDegree, GM, R);
maxDegree = harm.maxDegree();
const Vector kn = kernel->inverseCoefficients(Vector3d(0, 0, evalRadius), maxDegree, harm.isInterior());
const Bool hasSigma = harm.sigma2cnm().size() || harm.sigma2snm().size();
auto vectorMedian = [](std::vector<Double> &data)
{
std::partial_sort(data.begin(), data.begin()+data.size()/2+1, data.end());
return (data.size()%2) ? data.at(data.size()/2) : (0.5*(data.at(data.size()/2-1)+data.at(data.size()/2)));
};
auto vectorAccumulate = [](std::vector<Double> &data)
{
std::for_each(data.begin(), data.end(), [](Double &v) { v = v*v; });
std::partial_sum(data.begin(), data.end(), data.begin());
std::for_each(data.begin(), data.end(), [](Double &v) { v = std::sqrt(v); });
};
std::vector<Double> x, y, sigma;
for(UInt n=0; n<=maxDegree; n++)
{
const UInt minOrder = static_cast<UInt>(gap*static_cast<Double>(n)+0.5); // Sneeuw
const Double areaFactor = (minOrder>0) ? ((2.*n+1.)/(2.*n+2.-2.*minOrder)) : (1.0);
const Double factor = areaFactor * std::pow(harm.GM()/harm.R() * std::pow(harm.R()/evalRadius, n+1) * kn(n), 2);
std::vector<Double> coefficients, formalErrors;
for(UInt m=minOrder; m<=n; m++)
{
coefficients.push_back(factor * std::pow(harm.cnm()(n, m),2));
if(hasSigma) formalErrors.push_back(factor * harm.sigma2cnm()(n, m));
if(m > 0)
{
coefficients.push_back(factor * std::pow(harm.snm()(n, m),2));
if(hasSigma) formalErrors.push_back(factor * harm.sigma2snm()(n, m));
}
}
// degree variances
// ----------------
x.push_back(n);
if( (degreeType == RMS) || (degreeType == CUMMULATE) )
{
y.push_back( std::sqrt(std::accumulate(coefficients.begin(), coefficients.end(), 0.0)) );
if(hasSigma) sigma.push_back( std::sqrt(std::accumulate(formalErrors.begin(), formalErrors.end(), 0.0)) );
}
else if(degreeType == MEDIAN)
{
y.push_back( std::sqrt( (2*n+1) * vectorMedian(coefficients)) );
if(hasSigma) sigma.push_back( std::sqrt( (2*n+1) * vectorMedian(formalErrors)) );
}
} // for(n)
if(degreeType == CUMMULATE)
{
vectorAccumulate(y);
if(hasSigma) vectorAccumulate(sigma);
}
Matrix data(x.size(), 3, NAN_EXPR);
copy(Vector(x), data.column(0));
copy(Vector(y), data.column(1));
if(hasSigma) copy(Vector(sigma), data.column(2));
// write
// -----
logStatus<<"write degree amplitudes to file <"<<fileNameCoeff<<">"<<Log::endl;
writeFileMatrix(fileNameCoeff, data);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|