1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
/***********************************************/
/**
* @file gravityfield2DegreeAmplitudesPlotGrid.cpp
*
* @brief Time series of degree amplitudes from a time variable gravityfield.
*
* @author Torsten Mayer-Guerr
* @date 2016-01-22
*/
/***********************************************/
// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program computes a \configClass{timeSeries}{timeSeriesType}
of a time variable \configClass{gravityfield}{gravityfieldType} and saves it as degree amplitudes.
The expansion is limited in the range between \config{minDegree} and \config{maxDegree} inclusivly
\begin{equation}
\sigma_n = \frac{GM}{R}\left(\frac{R}{r}\right)^{n+1}k_n\sqrt{\sum_{m=0}^n c_{nm}^2+s_{nm}^2}.
\end{equation}
The \configFile{outputfileTimeSeries}{matrix} is a matrix with
every row containing the time, degree, degree amplitude, and the formal error.
To visualize the results use \program{PlotGraph}).
See also \program{Gravityfield2DegreeAmplitudes}.
\fig{!hb}{0.5}{gravityfield2DegreeAmplitudesPlotGrid}{fig:gravityfield2DegreeAmplitudesPlotGrid}{Degree amplitudes of monthly ITSG-Grace2016 solutions relative to GOCO05s.}
)";
/***********************************************/
#include "programs/program.h"
#include "files/fileMatrix.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/kernel/kernel.h"
#include "classes/timeSeries/timeSeries.h"
/***** CLASS ***********************************/
/** @brief Time series of degree amplitudes from a time variable gravityfield.
* @ingroup programsGroup */
class Gravityfield2DegreeAmplitudesPlotGrid
{
public:
void run(Config &config, Parallel::CommunicatorPtr comm);
};
GROOPS_REGISTER_PROGRAM(Gravityfield2DegreeAmplitudesPlotGrid, SINGLEPROCESS, "Time series of degree amplitudes from a time variable gravityfield.", Gravityfield, TimeSeries)
GROOPS_RENAMED_PROGRAM(Gravityfield2DegreeAmplitudeTimeSeries, Gravityfield2DegreeAmplitudesPlotGrid, date2time(2020, 07, 21))
/***********************************************/
void Gravityfield2DegreeAmplitudesPlotGrid::run(Config &config, Parallel::CommunicatorPtr /*comm*/)
{
try
{
FileName outName;
FileName outNameDegree;
GravityfieldPtr gravityfield;
KernelPtr kernel;
TimeSeriesPtr timeSeries;
Angle gap;
UInt minDegree, maxDegree;
Double evalRadius = NAN_EXPR;
Double GM, R;
readConfig(config, "outputfileTimeSeries", outName, Config::MUSTSET, "", "each row: mjd, degree, amplitude, formal error");
readConfig(config, "gravityfield", gravityfield, Config::MUSTSET, "", "");
readConfig(config, "kernel", kernel, Config::MUSTSET, "", "");
readConfig(config, "timeSeries", timeSeries, Config::MUSTSET, "", "");
readConfig(config, "evaluationRadius", evalRadius, Config::OPTIONAL, "", "evaluate the gravity field at this radius (default: evaluate at surface");
readConfig(config, "polarGap", gap, Config::DEFAULT, "0.", "exclude polar regions (aperture angle in degrees)");
readConfig(config, "minDegree", minDegree, Config::MUSTSET, "0", "minimal degree");
readConfig(config, "maxDegree", maxDegree, Config::MUSTSET, "", "maximal degree");
readConfig(config, "GM", GM, Config::DEFAULT, STRING_DEFAULT_GM, "Geocentric gravitational constant");
readConfig(config, "R", R, Config::DEFAULT, STRING_DEFAULT_R, "reference radius");
if(isCreateSchema(config)) return;
if(std::isnan(evalRadius)) evalRadius = R;
const std::vector<Time> times = timeSeries->times();
const Vector kn = kernel->inverseCoefficients(Vector3d(0, 0, evalRadius), maxDegree);
// time series of degree amplituds as matrix
//------------------------------------------
Matrix A(times.size()*(maxDegree+1-minDegree), 4); // mjd, degree, amplitude, formal error
UInt idx = 0;
for(UInt i=0; i<times.size(); i++)
{
SphericalHarmonics harm = gravityfield->sphericalHarmonics(times.at(i), maxDegree, minDegree, GM, R);
for(UInt n=minDegree; n<=maxDegree; n++)
{
const UInt minOrder = static_cast<UInt>(gap*static_cast<Double>(n)+0.5); // Sneeuw
const Double areaFactor = (minOrder > 0) ? ((2.*n+1.)/(2.*n+2.-2.*minOrder)) : (1.0);
const Double factor = areaFactor * std::pow(harm.GM()/harm.R() * std::pow(harm.R()/evalRadius, n+1) * kn(n), 2);
Double ampl = 0;
for(UInt m=minOrder; m<=n; m++)
ampl += factor * (std::pow(harm.cnm()(n,m), 2) + std::pow(harm.snm()(n,m), 2));
Double sigma = 0;
if(harm.sigma2cnm().size())
for(UInt m=minOrder; m<=n; m++)
sigma += factor * (harm.sigma2cnm()(n,m) + harm.sigma2snm()(n,m));
A(idx, 0) = times.at(i).mjd();
A(idx, 1) = n;
A(idx, 2) = std::sqrt(ampl);
A(idx, 3) = std::sqrt(sigma);
idx++;
}
}
// write file
//-----------
logStatus<<"write time series of degree amplitudes to file <"<<outName<<">"<<Log::endl;
writeFileMatrix(outName, A);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|