File: gravityfield2DisplacementTimeSeries.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (190 lines) | stat: -rw-r--r-- 7,588 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/***********************************************/
/**
* @file gravityfield2DisplacementTimeSeries.cpp
*
* @brief Generates a time series of station displacements.
*
* @author Torsten Mayer-Guerr
* @date 2010-11-01
*
*/
/***********************************************/

// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program computes a time series of displacements of a list of stations (\configClass{grid}{gridType})
due to the effect of time variable loading masses. The displacement~$\M u$ of a station is calculated according to
\begin{equation}\label{eq:displacement}
\M u(\M r) = \frac{1}{\gamma}\sum_{n=0}^\infty \left[\frac{h_n}{1+k_n}V_n(\M r)\,\M e_{up}
+ R\frac{l_n}{1+k_n}\left(
 \frac{\partial V_n(\M r)}{\partial \M e_{north}}\M e_{north}
+\frac{\partial V_n(\M r)}{\partial \M e_{east}} \M e_{east}\right)\right],
\end{equation}
where $\gamma$ is the normal gravity, the load Love and Shida numbers $h_n,l_n$ are given by
\configFile{inputfileDeformationLoadLoveNumber}{matrix} and the load Love numbers $k_n$ are given by
\configFile{inputfilePotentialLoadLoveNumber}{matrix}. The $V_n$ are the spherical harmonics expansion of
the full time variable gravitational potential (potential of the loading mass + deformation potential):
\begin{equation}
V(\M r) = \sum_{n=0}^\infty V_n(\M r).
\end{equation}
Deformations due to Earth tide and due to polar tides are computed using the IERS conventions.
Eq.~\eqref{eq:displacement} is not used in these cases.

The \config{outputfileTimeSeries} is an \file{instrument file}{instrument}, MISCVALUES.
The data columns contain the deformation of each station in $x,y,z$ in a global terrestrial
reference frame or alternatively in a local elliposidal frame (north, east, up)
if \config{localReferenceFrame} is set.
)";

/***********************************************/

#include "programs/program.h"
#include "base/planets.h"
#include "files/fileMatrix.h"
#include "files/fileInstrument.h"
#include "classes/grid/grid.h"
#include "classes/timeSeries/timeSeries.h"
#include "classes/tides/tides.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/earthRotation/earthRotation.h"
#include "classes/ephemerides/ephemerides.h"

/***** CLASS ***********************************/

/** @brief Generates a time series of station displacements.
* @ingroup programsGroup */
class Gravityfield2DisplacementTimeSeries
{
public:
  void run(Config &config, Parallel::CommunicatorPtr comm);
};

GROOPS_REGISTER_PROGRAM(Gravityfield2DisplacementTimeSeries, SINGLEPROCESS, "generates a time series of station displacements", Gravityfield, TimeSeries)
GROOPS_RENAMED_PROGRAM(DisplacementTimeSeries, Gravityfield2DisplacementTimeSeries, date2time(2020, 2, 9))

/***********************************************/

void Gravityfield2DisplacementTimeSeries::run(Config &config, Parallel::CommunicatorPtr /*comm*/)
{
  try
  {
    FileName         outputName;
    FileName         deformationName, potentialName;
    GridPtr          grid;
    TimeSeriesPtr    timeSeries;
    GravityfieldPtr  gravityfield;
    TidesPtr         tides;
    EarthRotationPtr earthRotation;
    EphemeridesPtr   ephemerides;
    Bool             removeMean, useLocalFrame;

    readConfig(config, "outputfileTimeSeries",               outputName,      Config::MUSTSET,  "", "x,y,z [m] per station");
    readConfig(config, "grid",                               grid,            Config::MUSTSET,  "",  "station list");
    readConfig(config, "timeSeries",                         timeSeries,      Config::MUSTSET,  "", "");
    readConfig(config, "gravityfield",                       gravityfield,    Config::DEFAULT,  "", "");
    readConfig(config, "tides",                              tides,           Config::DEFAULT,  "", "");
    readConfig(config, "earthRotation",                      earthRotation,   Config::MUSTSET,  "", "");
    readConfig(config, "ephemerides",                        ephemerides,     Config::OPTIONAL, "jpl", "");
    readConfig(config, "inputfileDeformationLoadLoveNumber", deformationName, Config::MUSTSET,  "{groopsDataDir}/loading/deformationLoveNumbers_CM_Gegout97.txt", "");
    readConfig(config, "inputfilePotentialLoadLoveNumber",   potentialName,   Config::OPTIONAL, "{groopsDataDir}/loading/loadLoveNumbers_Gegout97.txt", "if full potential is given and not only loading potential");
    readConfig(config, "removeMean",                         removeMean,      Config::DEFAULT,  "0", "remove the temporal mean of each coordinate");
    readConfig(config, "localReferenceFrame",                useLocalFrame,   Config::DEFAULT,  "0", "local left handed reference frame (north, east, up)");
    if(isCreateSchema(config)) return;

    std::vector<Time>     times  = timeSeries->times();
    std::vector<Vector3d> points = grid->points();

    // deformation load love numbers
    // -----------------------------
    Matrix love;
    readFileMatrix(deformationName, love);
    Vector hn = love.column(0);
    Vector ln = love.column(1);

    // models contain the total mass (loading mass & deformation mass effect)
    if(!potentialName.empty())
    {
      Vector kn;
      readFileMatrix(potentialName, kn);
      for(UInt n=2; n<std::min(kn.rows(), hn.rows()); n++)
        hn(n) /= (1.+kn(n));
      for(UInt n=2; n<std::min(kn.rows(), ln.rows()); n++)
        ln(n) /= (1.+kn(n));
    }

    // normal gravity
    // --------------
    Vector gravity(points.size());
    for(UInt i=0; i<points.size(); i++)
      gravity(i) = Planets::normalGravity(points.at(i));

    // Earth rotation
    // --------------
    logStatus<<"Compute Earth rotation"<<Log::endl;
    std::vector<Rotary3d> rotEarth(times.size());
    Single::forEach(times.size(), [&](UInt i)
    {
      rotEarth.at(i) = earthRotation->rotaryMatrix(times.at(i));
    });

    // displacements
    // -------------
    logStatus<<"compute station displacements"<<Log::endl;
    std::vector< std::vector<Vector3d> > disp(points.size());
    for(UInt k=0; k<points.size(); k++)
      disp.at(k).resize(times.size());
    gravityfield->deformation(times, points, gravity, hn, ln, disp);
    tides->deformation(times, points, rotEarth, earthRotation, ephemerides, gravity, hn, ln, disp);

    // local frame
    // -----------
    if(useLocalFrame)
    {
      logStatus<<"rotate into local left handed reference frame (north, east, up)"<<Log::endl;
      for(UInt k=0; k<points.size(); k++)
      {
        const Transform3d lnof2trf = localNorthEastUp(points.at(k));
        for(UInt i=0; i<times.size(); i++)
          disp.at(k).at(i) = lnof2trf.inverseTransform(disp.at(k).at(i));
      }
    }

    // sort into matrix
    // ----------------
    Matrix A(times.size(), 1+3*points.size());
    for(UInt i=0; i<times.size(); i++)
    {
      A(i,0) = times.at(i).mjd();
      for(UInt k=0; k<points.size(); k++)
      {
        A(i,3*k+1) =  disp.at(k).at(i).x();
        A(i,3*k+2) =  disp.at(k).at(i).y();
        A(i,3*k+3) =  disp.at(k).at(i).z();
      }
    }

    // remove temporal mean
    // --------------------
    if(removeMean)
    {
      logStatus<<"remove mean"<<Log::endl;
      for(UInt k=1; k<A.columns(); k++)
        A.column(k) -= mean(A.column(k));
    }

    // write file
    // ----------
    if(!outputName.empty())
    {
      logStatus<<"write time series to file <"<<outputName<<">"<<Log::endl;
      InstrumentFile::write(outputName, Arc(times, A));
    }
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/