File: gravityfield2TimeSplines.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (295 lines) | stat: -rw-r--r-- 13,078 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
/***********************************************/
/**
* @file gravityfield2TimeSplines.cpp
*
* @brief Estimate splines in time domain from a time variable gravity field.
*
* @author Torsten Mayer-Guerr
* @date 2006-09-26
*
*/
/***********************************************/

// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program estimates splines in time domain from a time variable gravity field
and writes \configFile{outputfileTimeSplines}{timeSplinesGravityField}.
The \configClass{gravityfield}{gravityfieldType} is sampled at \configClass{sampling}{timeSeriesType}, converted to potential coefficients
in the range between \config{minDegree} and \config{maxDegree} inclusively.
The time series of spherical harmonics can be temporal filtered with \configClass{temporalFilter}{digitalFilterType}.

In the next step temporal splines with \config{splineDegree} and nodal points given
at \configClass{splineTimeSeries}{timeSeriesType} are adjusted to the time series in a least squares sense.
This is very fast for block means (splineDegree = 0) but for other splines a large systems of equations
must be solved. In the adjustment process the time series of gravity fields can be interpreted as samples
at the given times or as continuous function with linear behaviour between sampled points (\config{linearInterpolation}).

To combine a series of potential coefficients to a spline file with block means (splineDegree = 0)
use the fast \program{PotentialCoefficients2BlockMeanTimeSplines} instead.
)";

/***********************************************/

#include "programs/program.h"
#include "files/fileTimeSplinesGravityfield.h"
#include "classes/timeSeries/timeSeries.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/digitalFilter/digitalFilter.h"

/***** CLASS ***********************************/

/** @brief Estimate splines in time domain from a time variable gravity field.
* @ingroup programsGroup */
class Gravityfield2TimeSplines
{
public:
  void run(Config &config, Parallel::CommunicatorPtr comm);
};

GROOPS_REGISTER_PROGRAM(Gravityfield2TimeSplines, SINGLEPROCESS, "Estimate splines in time domain from a time variable gravity field", Gravityfield, TimeSplines)

/***********************************************/

void Gravityfield2TimeSplines::run(Config &config, Parallel::CommunicatorPtr /*comm*/)
{
  try
  {
    FileName         outputName;
    UInt             minDegree, maxDegree = INFINITYDEGREE;
    Time             time;
    Double           GM, R;
    GravityfieldPtr  gravityfield;
    TimeSeriesPtr    timeSeriesSplines, timeSeriesObs;
    Bool             removeMean, interpolateLinear;
    UInt             splineDegree;
    DigitalFilterPtr digitalFilter;

    readConfig(config, "outputfileTimeSplines", outputName,        Config::MUSTSET,  "",  "");
    readConfig(config, "gravityfield",          gravityfield,      Config::MUSTSET,  "",  "");
    readConfig(config, "temporalFilter",        digitalFilter,     Config::OPTIONAL, "",  "filter sampled gravity field in time");
    readConfig(config, "minDegree",             minDegree,         Config::DEFAULT,  "0", "");
    readConfig(config, "maxDegree",             maxDegree,         Config::OPTIONAL, "",  "");
    readConfig(config, "GM",                    GM,                Config::DEFAULT,  STRING_DEFAULT_GM, "Geocentric gravitational constant");
    readConfig(config, "R",                     R,                 Config::DEFAULT,  STRING_DEFAULT_R,  "reference radius");
    readConfig(config, "sampling",              timeSeriesObs,     Config::MUSTSET,  "",  "gravity field is sampled at these times");
    readConfig(config, "removeMean",            removeMean,        Config::DEFAULT,  "0", "remove the temporal mean of the series before estimating the splines");
    readConfig(config, "linearInterpolation",   interpolateLinear, Config::DEFAULT,  "0", "assume linear behavior between sampled points");
    readConfig(config, "splineDegree",          splineDegree,      Config::MUSTSET,  "",  "degree of splines");
    readConfig(config, "splineTimeSeries",      timeSeriesSplines, Config::MUSTSET,  "",  "nodal points of splines in time domain");
    if(isCreateSchema(config)) return;

    // ============================================

    // sample gravity field to create time series of potential coefficients
    // --------------------------------------------------------------------
    logStatus<<"generate time series of potential coefficients"<<Log::endl;
    std::vector<Time> timesObs = timeSeriesObs->times();

    SphericalHarmonics shc = gravityfield->sphericalHarmonics(timesObs.front(), maxDegree, minDegree, GM, R);
    maxDegree = shc.maxDegree();
    Matrix sample(timesObs.size(), (maxDegree+1)*(maxDegree+1));
    Single::forEach(timesObs.size(), [&](UInt i)
    {
      copy(gravityfield->sphericalHarmonics(timesObs.at(i), maxDegree, minDegree, GM, R).x().trans(), sample.row(i));
    });

    // remove temporal mean
    if(removeMean)
    {
      logStatus<<"remove temporal mean"<<Log::endl;
      for(UInt k=0; k<sample.columns(); k++)
        sample.column(k) -= mean(sample.column(k));
    }

    // filter time series
    if(digitalFilter)
    {
      logStatus<<"apply temporal filter"<<Log::endl;
      sample = digitalFilter->filter(sample);
    }

    // ============================================

    // test time series
    // ----------------
    std::vector<Time> timesSplines = timeSeriesSplines->times();
    const UInt nodeCount = timesSplines.size()-1+splineDegree;
    if(timesSplines.size()<2)
      throw(Exception("2 points in time must be given at least"));

    // result
    // ------
    Matrix x(nodeCount, sample.columns());

    // Test special cases
    // ------------------
    if((splineDegree==0) && (!interpolateLinear)) // block mean time splines
    {
      UInt idxObs  = 0;
      for(UInt i=0; i<nodeCount; i++)
      {
        UInt count = 0;
        for(; (idxObs<timesObs.size()) && (timesObs.at(idxObs)<timesSplines.at(i+1)); idxObs++)
        {
          if(timesObs.at(idxObs)<timesSplines.at(i))
            continue;
          x.row(i) += sample.row(idxObs);
          count++;
        }
        x.row(i) *= 1./count;
      }
    }
    else if((splineDegree==0) && interpolateLinear) // block mean time splines
    {
      UInt idxObs  = 0;
      for(UInt i=0; i<nodeCount; i++)
      {
        const Double T = (timesSplines.at(i+1)-timesSplines.at(i)).mjd();
        for(; (idxObs+1<timesObs.size()) && (timesObs.at(idxObs)<timesSplines.at(i+1)); idxObs++)
        {
          const Double tau1    = (timesObs.at(idxObs)  -timesSplines.at(i)).mjd()/T;
          const Double tau2    = (timesObs.at(idxObs+1)-timesSplines.at(i)).mjd()/T;
          const Double dtau    = tau2-tau1;
          const Double factor1 = 1./dtau * ((tau2*std::min(1.,tau2) - 0.5*pow(std::min(1.,tau2),2)) - (tau2*std::max(0.,tau1) - 0.5*pow(std::max(0.,tau1),2)));
          const Double factor2 = 1./dtau * ((0.5*pow(std::min(1.,tau2),2) - tau1*std::min(1.,tau2)) - (0.5*pow(std::max(0.,tau1),2) - tau1*std::max(0.,tau1)));
          x.row(i) += factor1 * sample.row(idxObs) + factor2 * sample.row(idxObs+1);
        }
      }
    }
    else if((splineDegree==1) && (timesObs.size() == timesSplines.size())) // linear splines -> sampling points == splines values
    {
      x = sample;
    }
    else // high order splines (general case)
    {
      // coefficients of splines polynomials phi_i(tau) = sum_n coeff_{i,n}*tau^n
      // ------------------------------------------------------------------------
      Matrix coeff(splineDegree+1, splineDegree+1);
      switch(splineDegree)
      {
        case 0: // Blockmittel
          coeff(0,0) = 1.0;
          break;
        case 1: // Linear
          coeff(1,1) =  1.0;                   // t
          coeff(0,1) = -1.0; coeff(0,0) = 1.0; // 1-t
          break;
        case 2: // Quadratic
          coeff(2,2) =  0.5;                                       //  0.5*t^2
          coeff(1,2) = -1.0; coeff(1,1) =  1.0; coeff(1,0) = 0.5;  // -1.0*t^2 + t + 0.5
          coeff(0,2) =  0.5; coeff(0,1) = -1.0; coeff(0,0) = 0.5;  //  0.5*t^2 - t + 0.5
          break;
        case 3: // Cubic
          coeff(3,3) = +1./6.;                                                                 // +1./6.*t^3
          coeff(2,3) = -3./6.; coeff(2,2) = +3./6.; coeff(2,1) = +3./6.; coeff(2,0) = +1./6.;  // -3./6.*t^3 + 3./6.*t^2 + 3./6.*t + 1./6.;
          coeff(1,3) = +3./6.; coeff(1,2) = -6./6.; coeff(1,1) = +0./6.; coeff(1,0) = +4./6.;  // +3./6.*t^3 - 6./6.*t^2 + 0./6.*t + 4./6.;
          coeff(0,3) = -1./6.; coeff(0,2) = +3./6.; coeff(0,1) = -3./6.; coeff(0,0) = +1./6.;  // -1./6.*t^3 - 3./6.*t^2 - 3./6.*t + 1./6.;
          break;
        default:
          throw(Exception("degree of spline not implemented"));
      }

      logStatus<<"least squares adjustment"<<Log::endl;
      logInfo<<"  size of design matrix "<<timesObs.size()<<" x "<<nodeCount<<" = "<<8.*timesObs.size()*nodeCount/1024./1024.<<" MB"<<Log::endl;
      Matrix At(nodeCount, timesObs.size());  // transpose of design matrix
      Matrix N(nodeCount, Matrix::SYMMETRIC); // normal matrix

      if(!interpolateLinear)
      {
        UInt idxObs  = 0;
        for(UInt i=0; i<timesSplines.size()-1; i++)
        {
          const Double T = (timesSplines.at(i+1)-timesSplines.at(i)).mjd();
          for(; (idxObs<timesObs.size()) && (timesObs.at(idxObs)<timesSplines.at(i+1)); idxObs++)
          {
            if(timesObs.at(idxObs)<timesSplines.at(i))
              continue;
            const Double tau = (timesObs.at(idxObs)-timesSplines.at(i)).mjd()/T;
            for(UInt k=0; k<=splineDegree; k++)
              for(UInt n=0; n<=splineDegree; n++)
                At(i+k, idxObs) += coeff(k,n) * std::pow(tau, n);

            // normal matrix
            for(UInt k1=0; k1<=splineDegree; k1++)
              for(UInt k2=0; k2<=splineDegree; k2++)
                N(i+k1, i+k2) += At(i+k1,idxObs) * At(i+k2,idxObs);
          }
        }
      }
      else
      {
        // interpolateLinear
        UInt idxObs = 0;
        for(UInt i=0; i<timesSplines.size()-1; i++)
        {
          const Double T = (timesSplines.at(i+1)-timesSplines.at(i)).mjd();
          while((idxObs+1<timesObs.size()) && (timesObs.at(idxObs)<timesSplines.at(i+1)))
          {
            const Double tau1 = (timesObs.at(idxObs)  -timesSplines.at(i)).mjd()/T;
            const Double tau2 = (timesObs.at(idxObs+1)-timesSplines.at(i)).mjd()/T;
            const Double dtau = tau2-tau1;

            // linear interpolation between sampling points
            // and integration of the scalar product of the line and the basis functions phi=sum_n coeff_n*tau^n
            for(UInt z=0; z<=splineDegree; z++)
              for(UInt n=0; n<=splineDegree; n++)
              {
                At(i+z,idxObs)   += T/dtau * coeff(z,n) * ((tau2*pow(std::min(1.,tau2),n+1)/(n+1) - pow(std::min(1.,tau2),n+2)/(n+2)) - (tau2*pow(std::max(0.,tau1),n+1)/(n+1) - pow(std::max(0.,tau1),n+2)/(n+2)));
                At(i+z,idxObs+1) += T/dtau * coeff(z,n) * ((pow(std::min(1.,tau2),n+2)/(n+2) - tau1*pow(std::min(1.,tau2),n+1)/(n+1)) - (pow(std::max(0.,tau1),n+2)/(n+2) - tau1*pow(std::max(0.,tau1),n+1)/(n+1)));
              }

            if(timesObs.at(idxObs+1)>timesSplines.at(i+1))
              break;
            idxObs++;
          }

          // normal matrix
          // Integral of the product of the basis functions <phi_z, phi_s>
          for(UInt z=0; z<=splineDegree; z++)
            for(UInt s=0; s<=splineDegree; s++)
              for(UInt n1=0; n1<=splineDegree; n1++)
                for(UInt n2=0; n2<=splineDegree; n2++)
                  N(i+z, i+s) += T/(n1+n2+1) * coeff(z,n1) * coeff(s,n2);
        }
      } // if(interpolateLinear)

      // Solve the equation system
      // -----------------------------
      logStatus<<"solve the equation system"<<Log::endl;
      solveInPlace(N, At);
      x = At * sample;
    } // if(splineDegree>0)

    // ============================================

    // sort into coefficient triangles
    // -------------------------------
    std::vector<Matrix> cnm(nodeCount, Matrix(maxDegree+1, Matrix::TRIANGULAR, Matrix::LOWER));
    std::vector<Matrix> snm(nodeCount, Matrix(maxDegree+1, Matrix::TRIANGULAR, Matrix::LOWER));
    for(UInt i=0; i<nodeCount; i++)
    {
      UInt idx = 0;
      for(UInt n=0; n<=maxDegree; n++)
      {
        cnm.at(i)(n,0) = x(i, idx++);
        for(UInt m=1; m<=n; m++)
        {
          cnm.at(i)(n,m) = x(i, idx++);
          snm.at(i)(n,m) = x(i, idx++);
        }
      }
    }

    // write time splines
    // ------------------
    logStatus<<"write time splines to file <"<<outputName<<">"<<Log::endl;
    writeFileTimeSplinesGravityfield(outputName, GM, R, splineDegree, timesSplines, cnm, snm);
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/