1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
/***********************************************/
/**
* @file gravityfield2TimeSplines.cpp
*
* @brief Estimate splines in time domain from a time variable gravity field.
*
* @author Torsten Mayer-Guerr
* @date 2006-09-26
*
*/
/***********************************************/
// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program estimates splines in time domain from a time variable gravity field
and writes \configFile{outputfileTimeSplines}{timeSplinesGravityField}.
The \configClass{gravityfield}{gravityfieldType} is sampled at \configClass{sampling}{timeSeriesType}, converted to potential coefficients
in the range between \config{minDegree} and \config{maxDegree} inclusively.
The time series of spherical harmonics can be temporal filtered with \configClass{temporalFilter}{digitalFilterType}.
In the next step temporal splines with \config{splineDegree} and nodal points given
at \configClass{splineTimeSeries}{timeSeriesType} are adjusted to the time series in a least squares sense.
This is very fast for block means (splineDegree = 0) but for other splines a large systems of equations
must be solved. In the adjustment process the time series of gravity fields can be interpreted as samples
at the given times or as continuous function with linear behaviour between sampled points (\config{linearInterpolation}).
To combine a series of potential coefficients to a spline file with block means (splineDegree = 0)
use the fast \program{PotentialCoefficients2BlockMeanTimeSplines} instead.
)";
/***********************************************/
#include "programs/program.h"
#include "files/fileTimeSplinesGravityfield.h"
#include "classes/timeSeries/timeSeries.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/digitalFilter/digitalFilter.h"
/***** CLASS ***********************************/
/** @brief Estimate splines in time domain from a time variable gravity field.
* @ingroup programsGroup */
class Gravityfield2TimeSplines
{
public:
void run(Config &config, Parallel::CommunicatorPtr comm);
};
GROOPS_REGISTER_PROGRAM(Gravityfield2TimeSplines, SINGLEPROCESS, "Estimate splines in time domain from a time variable gravity field", Gravityfield, TimeSplines)
/***********************************************/
void Gravityfield2TimeSplines::run(Config &config, Parallel::CommunicatorPtr /*comm*/)
{
try
{
FileName outputName;
UInt minDegree, maxDegree = INFINITYDEGREE;
Time time;
Double GM, R;
GravityfieldPtr gravityfield;
TimeSeriesPtr timeSeriesSplines, timeSeriesObs;
Bool removeMean, interpolateLinear;
UInt splineDegree;
DigitalFilterPtr digitalFilter;
readConfig(config, "outputfileTimeSplines", outputName, Config::MUSTSET, "", "");
readConfig(config, "gravityfield", gravityfield, Config::MUSTSET, "", "");
readConfig(config, "temporalFilter", digitalFilter, Config::OPTIONAL, "", "filter sampled gravity field in time");
readConfig(config, "minDegree", minDegree, Config::DEFAULT, "0", "");
readConfig(config, "maxDegree", maxDegree, Config::OPTIONAL, "", "");
readConfig(config, "GM", GM, Config::DEFAULT, STRING_DEFAULT_GM, "Geocentric gravitational constant");
readConfig(config, "R", R, Config::DEFAULT, STRING_DEFAULT_R, "reference radius");
readConfig(config, "sampling", timeSeriesObs, Config::MUSTSET, "", "gravity field is sampled at these times");
readConfig(config, "removeMean", removeMean, Config::DEFAULT, "0", "remove the temporal mean of the series before estimating the splines");
readConfig(config, "linearInterpolation", interpolateLinear, Config::DEFAULT, "0", "assume linear behavior between sampled points");
readConfig(config, "splineDegree", splineDegree, Config::MUSTSET, "", "degree of splines");
readConfig(config, "splineTimeSeries", timeSeriesSplines, Config::MUSTSET, "", "nodal points of splines in time domain");
if(isCreateSchema(config)) return;
// ============================================
// sample gravity field to create time series of potential coefficients
// --------------------------------------------------------------------
logStatus<<"generate time series of potential coefficients"<<Log::endl;
std::vector<Time> timesObs = timeSeriesObs->times();
SphericalHarmonics shc = gravityfield->sphericalHarmonics(timesObs.front(), maxDegree, minDegree, GM, R);
maxDegree = shc.maxDegree();
Matrix sample(timesObs.size(), (maxDegree+1)*(maxDegree+1));
Single::forEach(timesObs.size(), [&](UInt i)
{
copy(gravityfield->sphericalHarmonics(timesObs.at(i), maxDegree, minDegree, GM, R).x().trans(), sample.row(i));
});
// remove temporal mean
if(removeMean)
{
logStatus<<"remove temporal mean"<<Log::endl;
for(UInt k=0; k<sample.columns(); k++)
sample.column(k) -= mean(sample.column(k));
}
// filter time series
if(digitalFilter)
{
logStatus<<"apply temporal filter"<<Log::endl;
sample = digitalFilter->filter(sample);
}
// ============================================
// test time series
// ----------------
std::vector<Time> timesSplines = timeSeriesSplines->times();
const UInt nodeCount = timesSplines.size()-1+splineDegree;
if(timesSplines.size()<2)
throw(Exception("2 points in time must be given at least"));
// result
// ------
Matrix x(nodeCount, sample.columns());
// Test special cases
// ------------------
if((splineDegree==0) && (!interpolateLinear)) // block mean time splines
{
UInt idxObs = 0;
for(UInt i=0; i<nodeCount; i++)
{
UInt count = 0;
for(; (idxObs<timesObs.size()) && (timesObs.at(idxObs)<timesSplines.at(i+1)); idxObs++)
{
if(timesObs.at(idxObs)<timesSplines.at(i))
continue;
x.row(i) += sample.row(idxObs);
count++;
}
x.row(i) *= 1./count;
}
}
else if((splineDegree==0) && interpolateLinear) // block mean time splines
{
UInt idxObs = 0;
for(UInt i=0; i<nodeCount; i++)
{
const Double T = (timesSplines.at(i+1)-timesSplines.at(i)).mjd();
for(; (idxObs+1<timesObs.size()) && (timesObs.at(idxObs)<timesSplines.at(i+1)); idxObs++)
{
const Double tau1 = (timesObs.at(idxObs) -timesSplines.at(i)).mjd()/T;
const Double tau2 = (timesObs.at(idxObs+1)-timesSplines.at(i)).mjd()/T;
const Double dtau = tau2-tau1;
const Double factor1 = 1./dtau * ((tau2*std::min(1.,tau2) - 0.5*pow(std::min(1.,tau2),2)) - (tau2*std::max(0.,tau1) - 0.5*pow(std::max(0.,tau1),2)));
const Double factor2 = 1./dtau * ((0.5*pow(std::min(1.,tau2),2) - tau1*std::min(1.,tau2)) - (0.5*pow(std::max(0.,tau1),2) - tau1*std::max(0.,tau1)));
x.row(i) += factor1 * sample.row(idxObs) + factor2 * sample.row(idxObs+1);
}
}
}
else if((splineDegree==1) && (timesObs.size() == timesSplines.size())) // linear splines -> sampling points == splines values
{
x = sample;
}
else // high order splines (general case)
{
// coefficients of splines polynomials phi_i(tau) = sum_n coeff_{i,n}*tau^n
// ------------------------------------------------------------------------
Matrix coeff(splineDegree+1, splineDegree+1);
switch(splineDegree)
{
case 0: // Blockmittel
coeff(0,0) = 1.0;
break;
case 1: // Linear
coeff(1,1) = 1.0; // t
coeff(0,1) = -1.0; coeff(0,0) = 1.0; // 1-t
break;
case 2: // Quadratic
coeff(2,2) = 0.5; // 0.5*t^2
coeff(1,2) = -1.0; coeff(1,1) = 1.0; coeff(1,0) = 0.5; // -1.0*t^2 + t + 0.5
coeff(0,2) = 0.5; coeff(0,1) = -1.0; coeff(0,0) = 0.5; // 0.5*t^2 - t + 0.5
break;
case 3: // Cubic
coeff(3,3) = +1./6.; // +1./6.*t^3
coeff(2,3) = -3./6.; coeff(2,2) = +3./6.; coeff(2,1) = +3./6.; coeff(2,0) = +1./6.; // -3./6.*t^3 + 3./6.*t^2 + 3./6.*t + 1./6.;
coeff(1,3) = +3./6.; coeff(1,2) = -6./6.; coeff(1,1) = +0./6.; coeff(1,0) = +4./6.; // +3./6.*t^3 - 6./6.*t^2 + 0./6.*t + 4./6.;
coeff(0,3) = -1./6.; coeff(0,2) = +3./6.; coeff(0,1) = -3./6.; coeff(0,0) = +1./6.; // -1./6.*t^3 - 3./6.*t^2 - 3./6.*t + 1./6.;
break;
default:
throw(Exception("degree of spline not implemented"));
}
logStatus<<"least squares adjustment"<<Log::endl;
logInfo<<" size of design matrix "<<timesObs.size()<<" x "<<nodeCount<<" = "<<8.*timesObs.size()*nodeCount/1024./1024.<<" MB"<<Log::endl;
Matrix At(nodeCount, timesObs.size()); // transpose of design matrix
Matrix N(nodeCount, Matrix::SYMMETRIC); // normal matrix
if(!interpolateLinear)
{
UInt idxObs = 0;
for(UInt i=0; i<timesSplines.size()-1; i++)
{
const Double T = (timesSplines.at(i+1)-timesSplines.at(i)).mjd();
for(; (idxObs<timesObs.size()) && (timesObs.at(idxObs)<timesSplines.at(i+1)); idxObs++)
{
if(timesObs.at(idxObs)<timesSplines.at(i))
continue;
const Double tau = (timesObs.at(idxObs)-timesSplines.at(i)).mjd()/T;
for(UInt k=0; k<=splineDegree; k++)
for(UInt n=0; n<=splineDegree; n++)
At(i+k, idxObs) += coeff(k,n) * std::pow(tau, n);
// normal matrix
for(UInt k1=0; k1<=splineDegree; k1++)
for(UInt k2=0; k2<=splineDegree; k2++)
N(i+k1, i+k2) += At(i+k1,idxObs) * At(i+k2,idxObs);
}
}
}
else
{
// interpolateLinear
UInt idxObs = 0;
for(UInt i=0; i<timesSplines.size()-1; i++)
{
const Double T = (timesSplines.at(i+1)-timesSplines.at(i)).mjd();
while((idxObs+1<timesObs.size()) && (timesObs.at(idxObs)<timesSplines.at(i+1)))
{
const Double tau1 = (timesObs.at(idxObs) -timesSplines.at(i)).mjd()/T;
const Double tau2 = (timesObs.at(idxObs+1)-timesSplines.at(i)).mjd()/T;
const Double dtau = tau2-tau1;
// linear interpolation between sampling points
// and integration of the scalar product of the line and the basis functions phi=sum_n coeff_n*tau^n
for(UInt z=0; z<=splineDegree; z++)
for(UInt n=0; n<=splineDegree; n++)
{
At(i+z,idxObs) += T/dtau * coeff(z,n) * ((tau2*pow(std::min(1.,tau2),n+1)/(n+1) - pow(std::min(1.,tau2),n+2)/(n+2)) - (tau2*pow(std::max(0.,tau1),n+1)/(n+1) - pow(std::max(0.,tau1),n+2)/(n+2)));
At(i+z,idxObs+1) += T/dtau * coeff(z,n) * ((pow(std::min(1.,tau2),n+2)/(n+2) - tau1*pow(std::min(1.,tau2),n+1)/(n+1)) - (pow(std::max(0.,tau1),n+2)/(n+2) - tau1*pow(std::max(0.,tau1),n+1)/(n+1)));
}
if(timesObs.at(idxObs+1)>timesSplines.at(i+1))
break;
idxObs++;
}
// normal matrix
// Integral of the product of the basis functions <phi_z, phi_s>
for(UInt z=0; z<=splineDegree; z++)
for(UInt s=0; s<=splineDegree; s++)
for(UInt n1=0; n1<=splineDegree; n1++)
for(UInt n2=0; n2<=splineDegree; n2++)
N(i+z, i+s) += T/(n1+n2+1) * coeff(z,n1) * coeff(s,n2);
}
} // if(interpolateLinear)
// Solve the equation system
// -----------------------------
logStatus<<"solve the equation system"<<Log::endl;
solveInPlace(N, At);
x = At * sample;
} // if(splineDegree>0)
// ============================================
// sort into coefficient triangles
// -------------------------------
std::vector<Matrix> cnm(nodeCount, Matrix(maxDegree+1, Matrix::TRIANGULAR, Matrix::LOWER));
std::vector<Matrix> snm(nodeCount, Matrix(maxDegree+1, Matrix::TRIANGULAR, Matrix::LOWER));
for(UInt i=0; i<nodeCount; i++)
{
UInt idx = 0;
for(UInt n=0; n<=maxDegree; n++)
{
cnm.at(i)(n,0) = x(i, idx++);
for(UInt m=1; m<=n; m++)
{
cnm.at(i)(n,m) = x(i, idx++);
snm.at(i)(n,m) = x(i, idx++);
}
}
}
// write time splines
// ------------------
logStatus<<"write time splines to file <"<<outputName<<">"<<Log::endl;
writeFileTimeSplinesGravityfield(outputName, GM, R, splineDegree, timesSplines, cnm, snm);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|