1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
/***********************************************/
/**
* @file griddedDataReduceSampling.cpp
*
* @brief Generate coarse grid by computing mean values.
*
* @author Torsten Mayer-Guerr
* @date 2013-10-24
*/
/***********************************************/
// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
Generate coarse grid by computing area weighted mean values.
The number of points is decimated by averaging integer multiplies of grid points
(\config{multiplierLongitude}, \config{multiplierLatitude}).
if \config{volumeConserving} is set, data are interpreted as heights above ellipsoid
and the tesseroid volume
\begin{equation}
V=\int_r^{r+H}\int_{\varphi_1}^{\varphi_2}\int_{\lambda_1}^{\lambda_2} r^2\cos\varphi\,d\varphi\,d\lambda\,dr
\end{equation}
is conserved, where $r$ is the radius of the ellipsoid at grid center and
$(\varphi_1-\varphi_2)\times(\lambda_1-\lambda_2)$ are the grid cell boundaries.
This is meaninful for Digital Elevation Models (DEM).
The fine grid can be written, where the first coarse grid values (data0) are additionally appended.
)";
/***********************************************/
#include "programs/program.h"
#include "files/fileGriddedData.h"
#include "misc/miscGriddedData.h"
/***** CLASS ***********************************/
/** @brief Generate coarse grid by computing mean values.
* @ingroup programsGroup */
class GriddedDataReduceSampling
{
public:
void run(Config &config, Parallel::CommunicatorPtr comm);
};
GROOPS_REGISTER_PROGRAM(GriddedDataReduceSampling, SINGLEPROCESS, "Generate coarse grid by computing mean values", Grid)
/***********************************************/
void GriddedDataReduceSampling::run(Config &config, Parallel::CommunicatorPtr /*comm*/)
{
try
{
FileName fileNameOutCoarseGrid, fileNameOutFineGrid;
FileName fileNameInFineGrid;
UInt numberRows, numberCols;
Bool volumeConserving;
readConfig(config, "outputfileCoarseGridRectangular", fileNameOutCoarseGrid, Config::OPTIONAL, "", "coarse grid");
readConfig(config, "outputfileFineGridRectangular", fileNameOutFineGrid, Config::OPTIONAL, "", "fine grid with additional coarse grid values");
readConfig(config, "inputfileFineGridRectangular", fileNameInFineGrid, Config::MUSTSET, "", "Digital Terrain Model");
readConfig(config, "multiplierLongitude", numberCols, Config::MUSTSET, "8", "Generalizing factor");
readConfig(config, "multiplierLatitude", numberRows, Config::MUSTSET, "8", "Generalizing factor");
readConfig(config, "volumeConserving", volumeConserving, Config::DEFAULT, "0", "data are interpreted as heights above ellipsoid");
if(isCreateSchema(config)) return;
// read grid
// ---------
logStatus<<"read grid from file <"<<fileNameInFineGrid<<">"<<Log::endl;
GriddedDataRectangular gridFine;
readFileGriddedData(fileNameInFineGrid, gridFine);
std::vector<Angle> tmp;
std::vector<Double> radiusFine, longitude, latitude, dLambda, dPhi;
gridFine.geocentric(tmp, tmp, radiusFine);
gridFine.cellBorders(longitude, latitude);
gridFine.areaElements(dLambda, dPhi);
// Generate coarse grid
// --------------------
logStatus<<"generate coarse grid"<<Log::endl;
GriddedDataRectangular gridCoarse;
gridCoarse.ellipsoid = gridFine.ellipsoid;
gridCoarse.latitudes.resize(gridFine.latitudes.size()/numberRows);
for(UInt i=0; i<gridCoarse.latitudes.size(); i++)
gridCoarse.latitudes.at(i) = 0.5*(latitude.at(i*numberRows) + latitude.at((i+1)*numberRows));
gridCoarse.longitudes.resize(gridFine.longitudes.size()/numberCols);
for(UInt k=0; k<gridCoarse.longitudes.size(); k++)
gridCoarse.longitudes.at(k) = std::remainder(longitude.at(k*numberCols) + 0.5*std::remainder(longitude.at((k+1)*numberCols)-longitude.at(k*numberCols), 2*PI), 2*PI);
gridCoarse.heights.resize(gridCoarse.latitudes.size()); // Compute mean height
for(UInt i=0; i<gridCoarse.heights.size(); i++)
{
Double height = 0, weight = 0;
for(UInt ii=0; ii<numberRows; ii++)
{
height += dPhi.at(i) * gridFine.heights.at(i*numberRows+ii);
weight += dPhi.at(i);
}
gridCoarse.heights.at(i) = height/weight;
}
gridCoarse.values.resize(gridFine.values.size(), Matrix(gridCoarse.latitudes.size(), gridCoarse.longitudes.size()));
std::vector<Double> radiusCoarse, dLambdaCoarse, dPhiCoarse;
gridCoarse.geocentric(tmp, tmp, radiusCoarse);
gridCoarse.areaElements(dLambdaCoarse, dPhiCoarse);
// Compute mean values
// -------------------
logStatus<<"compute mean values"<<Log::endl;
if(!fileNameOutFineGrid.empty())
gridFine.values.push_back(Matrix(gridFine.latitudes.size(), gridFine.longitudes.size()));
Single::forEach(gridCoarse.latitudes.size(), [&](UInt i)
{
for(UInt k=0; k<gridCoarse.longitudes.size(); k++)
{
// compute volume of tesseroid V = (r2^3-r1^3)/3 * area with r2=r1+h
Vector volumes(gridCoarse.values.size());
for(UInt ii=0; ii<numberRows; ii++)
for(UInt kk=0; kk<numberCols; kk++)
{
const Double area = dPhi.at(i*numberRows+ii) * dLambda.at(k*numberCols+kk);
const Double r1 = radiusFine.at(i*numberRows+ii);
for(UInt idx=0; idx<gridCoarse.values.size(); idx++)
if(volumeConserving)
volumes(idx) += area * (std::pow(r1+gridFine.values.at(idx)(i*numberRows+ii, k*numberCols+kk), 3) - std::pow(r1, 3))/3.;
else
volumes(idx) += area * gridFine.values.at(idx)(i*numberRows+ii, k*numberCols+kk);
}
// height of tesseroid = (V*3/area - r1^3)^(1/3) - r1
const Double area = dPhiCoarse.at(i) * dLambdaCoarse.at(k);
const Double r1 = radiusCoarse.at(i);
for(UInt idx=0; idx<gridCoarse.values.size(); idx++)
if(volumeConserving)
gridCoarse.values.at(idx)(i, k) = std::pow(volumes(idx)*3/area + std::pow(r1, 3), 1./3.) - r1;
else
gridCoarse.values.at(idx)(i, k) = volumes(idx)/area;
if(!fileNameOutFineGrid.empty())
for(UInt ii=0; ii<numberRows; ii++)
for(UInt kk=0; kk<numberCols; kk++)
gridFine.values.back()(i*numberRows+ii, k*numberCols+kk) = gridCoarse.values.at(0)(i, k);
}
});
// write new grid
// --------------
if(!fileNameOutCoarseGrid.empty())
{
logStatus<<"write coarse grid to file <"<<fileNameOutCoarseGrid<<">"<<Log::endl;
writeFileGriddedData(fileNameOutCoarseGrid, gridCoarse);
MiscGriddedData::printStatistics(gridCoarse);
}
if(!fileNameOutFineGrid.empty())
{
logStatus<<"write fine grid to file <"<<fileNameOutFineGrid<<">"<<Log::endl;
writeFileGriddedData(fileNameOutFineGrid, gridFine);
MiscGriddedData::printStatistics(gridFine);
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|