1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/***********************************************/
/**
* @file griddedTopography2AtmospherePotentialCoefficients.cpp
*
* @brief Estimate interior and exterior potential coefficients for atmosphere above digital terrain models.
*
* @author Christian Pock
* @author Daniel Rieser
* @date 2013-10-16
*/
/***********************************************/
// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
Estimate interior and exterior potential coefficients for atmosphere above digital terrain models.
Coefficients for interior $(1/r)^{n+1}$ and exterior ($r^n$) are computed.
The density of the atmosphere is assumed to be (Sjöberg, 1998)
\begin{equation}
\rho_0\left(\frac{R}{R+h}\right)^\nu,
\end{equation}
where $R$ is the radial distance of the ellipsoid at each point, $h$ the radial height above the ellipsoid,
$\rho_0$ is \config{densitySeaLevel} and \config{nu} $\nu$ is a constant factor. The density is integrated
from \config{radialLowerBound} and \config{upperAtmosphericBoundary} above the ellipsoid.
The \config{radialLowerBound} is typically the topography and can be computed as expression at every point
from \configFile{inputfileGriddedData}{griddedData}.
)";
/***********************************************/
#include "programs/program.h"
#include "base/legendreFunction.h"
#include "parser/dataVariables.h"
#include "files/fileGriddedData.h"
#include "files/fileSphericalHarmonics.h"
#include "misc/miscGriddedData.h"
/***** CLASS ***********************************/
/** @brief Estimate interior and exterior atmospheric potential coefficients above digital terrain models.
* @ingroup programsGroup */
class GriddedTopography2AtmospherePotentialCoefficients
{
public:
void run(Config &config, Parallel::CommunicatorPtr comm);
};
GROOPS_REGISTER_PROGRAM(GriddedTopography2AtmospherePotentialCoefficients, PARALLEL, "Estimate interoir and exterior atmospheric potential coefficients above digital terrain models", Grid, PotentialCoefficients)
/***********************************************/
void GriddedTopography2AtmospherePotentialCoefficients::run(Config &config, Parallel::CommunicatorPtr comm)
{
try
{
FileName fileNameOutExterior, fileNameOutInterior, fileNameInGrid;
ExpressionVariablePtr expressionLower;
Double rho, ny, upperBoundary, factor;
UInt minDegree, maxDegree;
Double GM, R;
readConfig(config, "outputfilePotentialCoefficientsExterior", fileNameOutExterior, Config::OPTIONAL, "", "");
readConfig(config, "outputfilePotentialCoefficientsInterior", fileNameOutInterior, Config::OPTIONAL, "", "");
readConfig(config, "inputfileGriddedData", fileNameInGrid, Config::MUSTSET, "", "Digital Terrain Model");
readConfig(config, "densitySeaLevel", rho, Config::DEFAULT, "1.225", "[kg/m**3]");
readConfig(config, "ny", ny, Config::DEFAULT, "680", "Constant for Atmosphere");
readConfig(config, "radialLowerBound", expressionLower, Config::DEFAULT, "data0", "expression (variables 'L', 'B', 'height', 'data', and 'area' are taken from the gridded data");
readConfig(config, "upperAtmosphericBoundary", upperBoundary, Config::DEFAULT, "11000", "constant upper bound [m]");
readConfig(config, "factor", factor, Config::DEFAULT, "1.0", "the result is multiplied by this factor, set -1 to subtract the field");
readConfig(config, "minDegree", minDegree, Config::DEFAULT, "0", "");
readConfig(config, "maxDegree", maxDegree, Config::MUSTSET, "", "");
readConfig(config, "GM", GM, Config::DEFAULT, STRING_DEFAULT_GM, "Geocentric gravitational constant");
readConfig(config, "R", R, Config::DEFAULT, STRING_DEFAULT_R, "reference radius");
if(isCreateSchema(config)) return;
// read rectangular grid
// ---------------------
std::vector<Double> lambda, phi, radius;
Matrix topo;
if(Parallel::isMaster(comm))
{
// read rectangular grid
// ---------------------
logStatus<<"read grid from file <"<<fileNameInGrid<<">"<<Log::endl;
GriddedDataRectangular grid;
readFileGriddedData(fileNameInGrid, grid);
MiscGriddedData::printStatistics(grid);
// evaluate upper and lower height
// -------------------------------
logStatus<<"evaluate expression for lower boundary"<<Log::endl;
VariableList varList;
addDataVariables(grid, varList);
expressionLower->simplify(varList);
radius.resize(grid.heights.size());
for(UInt i=0; i<radius.size(); i++)
radius.at(i) = grid.ellipsoid(Angle(0), grid.latitudes.at(i), grid.heights.at(i)).r();
topo = Matrix(grid.latitudes.size(), grid.longitudes.size());
Single::forEach(grid.latitudes.size(), [&](UInt i)
{
for(UInt k=0; k<grid.longitudes.size(); k++)
{
evaluateDataVariables(grid, i, k, varList);
topo(i, k) = expressionLower->evaluate(varList); // Topography
}
});
grid.cellBorders(lambda, phi);
for(UInt i=0; i<phi.size(); i++)
phi.at(i) = grid.ellipsoid(Angle(0), Angle(phi.at(i)), 0.).phi(); // geocentric
} // if(Parallel::isMaster(comm))
Parallel::broadCast(topo, 0, comm);
Parallel::broadCast(radius, 0, comm);
Parallel::broadCast(lambda, 0, comm);
Parallel::broadCast(phi, 0, comm);
// precompute integral_sin, integral_cos
// -------------------------------------
Matrix cosm(lambda.size()-1, maxDegree+1);
Matrix sinm(lambda.size()-1, maxDegree+1);
for(UInt i=0; i<lambda.size()-1; i++)
{
cosm(i,0) = lambda.at(i+1)-lambda.at(i);
for(UInt m=1; m<=maxDegree; m++)
{
cosm(i,m) = (std::sin(m*lambda.at(i+1)) - std::sin(m*lambda.at(i)))/m;
sinm(i,m) = -(std::cos(m*lambda.at(i+1)) - std::cos(m*lambda.at(i)))/m;
}
}
// computing quadrature formular
// -----------------------------
logStatus<<"computing quadrature formular"<<Log::endl;
Matrix cnmExt(maxDegree+1, Matrix::TRIANGULAR, Matrix::LOWER);
Matrix snmExt(maxDegree+1, Matrix::TRIANGULAR, Matrix::LOWER);
Matrix cnmInt(maxDegree+1, Matrix::TRIANGULAR, Matrix::LOWER);
Matrix snmInt(maxDegree+1, Matrix::TRIANGULAR, Matrix::LOWER);
Parallel::forEach(phi.size(), [&](UInt i)
{
// const Matrix Pnm = LegendreFunction::integral(std::sin(phi.at(i+1)), std::sin(phi.at(i)), maxDegree);
const Matrix Pnm = LegendreFunction::compute(std::cos(0.5*(PI-phi.at(i+1)-phi.at(i))), maxDegree)
* std::fabs(std::sin(phi.at(i+1))-std::sin(phi.at(i))); // integral cos(phi) dPhi
const Double H0 = radius.at(i);
const Double term = factor * rho * GRAVITATIONALCONSTANT/GM *R*R*R;
Matrix fExt(lambda.size(), maxDegree+1);
Matrix fInt(lambda.size(), maxDegree+1);
for(UInt k=0; k<lambda.size(); k++)
{
const Double r1R = (1.+upperBoundary/H0);
const Double r2R = (1.+topo(i,k)/H0);
Double r1RnExt = term * std::pow(1.+upperBoundary/H0, 3.+minDegree-ny);
Double r2RnExt = term * std::pow(1.+topo(i,k)/H0, 3.+minDegree-ny);
Double r1RnInt = term * std::pow(1.+upperBoundary/H0, 2.-minDegree-ny);
Double r2RnInt = term * std::pow(1.+topo(i,k)/H0, 2.-minDegree-ny);
for(UInt n=minDegree; n<=maxDegree; n++)
{
if (n == ny-3.)
fExt(k,n) = term/(R*R*R) * std::pow(1./R, n) * std::pow(H0, ny) * std::log((H0+upperBoundary)/(H0+topo(i,k)));
else
fExt(k,n) = (r1RnExt-r2RnExt) * std::pow(H0/R, n+3.)/((2.*n+1.)*(3.+n-ny));
fInt(k,n) = (r1RnInt-r2RnInt) * std::pow(H0/R, 2.-n)/((2.*n+1.)*(2.-n-ny));
r1RnExt *=r1R;
r2RnExt *=r2R;
r1RnInt /=r1R;
r2RnInt /=r2R;
}
}
for(UInt n=minDegree; n<=maxDegree; n++)
for(UInt m=0; m<=n; m++)
{
cnmExt(n,m) += Pnm(n,m) * inner(cosm.column(m), fExt.column(n));
snmExt(n,m) += Pnm(n,m) * inner(sinm.column(m), fExt.column(n));
cnmInt(n,m) += Pnm(n,m) * inner(cosm.column(m), fInt.column(n));
snmInt(n,m) += Pnm(n,m) * inner(sinm.column(m), fInt.column(n));
}
}, comm);
Parallel::reduceSum(cnmExt, 0, comm);
Parallel::reduceSum(snmExt, 0, comm);
Parallel::reduceSum(cnmInt, 0, comm);
Parallel::reduceSum(snmInt, 0, comm);
// save potential coefficients
// ---------------------------
if(Parallel::isMaster(comm) && !fileNameOutExterior.empty())
{
logStatus<<"write potential coefficients to file <"<<fileNameOutExterior<<">"<<Log::endl;
writeFileSphericalHarmonics(fileNameOutExterior, SphericalHarmonics(GM, R, cnmExt, snmExt));
}
if(Parallel::isMaster(comm) && !fileNameOutInterior.empty())
{
logStatus<<"write potential coefficients (interior) to file <"<<fileNameOutInterior<<">"<<Log::endl;
writeFileSphericalHarmonics(fileNameOutInterior, SphericalHarmonics(GM, R, cnmInt, snmInt, TRUE));
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|