File: griddedTopography2PotentialCoefficients.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (226 lines) | stat: -rw-r--r-- 9,961 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/***********************************************/
/**
* @file griddedTopography2PotentialCoefficients.cpp
*
* @brief Estimate potential coefficients from digital terrain models.
*
* @author Torsten Mayer-Guerr
* @date 2011-11-01
*/
/***********************************************/

// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
Estimate potential coefficients from digital terrain models.
Coefficients for interior $(1/r)^{n+1}$ and exterior ($r^n$) are computed.
)";

/***********************************************/

#include "programs/program.h"
#include "base/legendreFunction.h"
#include "parser/dataVariables.h"
#include "files/fileGriddedData.h"
#include "files/fileSphericalHarmonics.h"
#include "misc/miscGriddedData.h"

/***** CLASS ***********************************/

/** @brief Estimate potential coefficients from digital terrain models.
* @ingroup programsGroup */
class GriddedTopography2PotentialCoefficients
{
public:
  void run(Config &config, Parallel::CommunicatorPtr comm);
};

GROOPS_REGISTER_PROGRAM(GriddedTopography2PotentialCoefficients, PARALLEL, "Estimate potential coefficients from digital terrain models", Grid, PotentialCoefficients)

/***********************************************/

void GriddedTopography2PotentialCoefficients::run(Config &config, Parallel::CommunicatorPtr comm)
{
  try
  {
    FileName              fileNameOutExterior, fileNameOutInterior;
    FileName              fileNameInGrid;
    ExpressionVariablePtr expressionUpper, expressionLower, expressionRho;
    Double                factor;
    UInt                  minDegree, maxDegree;
    Double                GM, R;

    readConfig(config, "outputfilePotentialCoefficients",         fileNameOutExterior, Config::OPTIONAL, "", "");
    readConfig(config, "outputfilePotentialCoefficientsInterior", fileNameOutInterior, Config::OPTIONAL, "", "");
    readConfig(config, "inputfileGriddedData", fileNameInGrid,  Config::MUSTSET, "",      "Digital Terrain Model");
    readConfig(config, "density",              expressionRho,   Config::DEFAULT, "2670",  "expression [kg/m^3]");
    readConfig(config, "radialUpperBound",     expressionUpper, Config::DEFAULT, "data0", "expression (variables 'L', 'B', 'height', 'data', and 'area' are taken from the gridded data");
    readConfig(config, "radialLowerBound",     expressionLower, Config::DEFAULT, "0",     "expression (variables 'L', 'B', 'height', 'data', and 'area' are taken from the gridded data");
    readConfig(config, "factor",               factor,          Config::DEFAULT, "1.0",   "the result is multiplied by this factor");
    readConfig(config, "minDegree",            minDegree,       Config::DEFAULT, "0",     "");
    readConfig(config, "maxDegree",            maxDegree,       Config::MUSTSET, "",      "");
    readConfig(config, "GM",                   GM,              Config::DEFAULT, STRING_DEFAULT_GM, "Geocentric gravitational constant");
    readConfig(config, "R",                    R,               Config::DEFAULT, STRING_DEFAULT_R,  "reference radius");
    if(isCreateSchema(config)) return;

    std::vector<Double> lambda, phi;
    Matrix              rLower, rUpper, rho;
    if(Parallel::isMaster(comm))
    {
      // read rectangular grid
      // ---------------------
      logStatus<<"read grid from file <"<<fileNameInGrid<<">"<<Log::endl;
      GriddedDataRectangular grid;
      readFileGriddedData(fileNameInGrid, grid);
      MiscGriddedData::printStatistics(grid);

      // evaluate upper and lower height
      // -------------------------------
      logStatus<<"evaluate upper and lower height"<<Log::endl;
      VariableList varList;
      addDataVariables(grid, varList);
      expressionUpper->simplify(varList);
      expressionLower->simplify(varList);
      expressionRho  ->simplify(varList);

      std::vector<Double> radius(grid.heights.size());
      for(UInt i=0; i<radius.size(); i++)
        radius.at(i) = grid.ellipsoid(Angle(0), grid.latitudes.at(i), grid.heights.at(i)).r();

      rLower = rUpper = rho = Matrix(grid.latitudes.size(), grid.longitudes.size());
      Single::forEach(grid.latitudes.size(), [&](UInt i)
      {
        for(UInt k=0; k<grid.longitudes.size(); k++)
        {
          evaluateDataVariables(grid, i, k, varList);
          rUpper(i,k) = radius.at(i) + expressionUpper->evaluate(varList);
          rLower(i,k) = radius.at(i) + expressionLower->evaluate(varList);
          rho(i,k)    = expressionRho->evaluate(varList);
        }
      });

      grid.cellBorders(lambda, phi);
      for(UInt i=0; i<phi.size(); i++)
        phi.at(i) = grid.ellipsoid(Angle(0), Angle(phi.at(i)), 0.).phi(); // geocentric
    } // if(Parallel::isMaster(comm))

    if(Parallel::size(comm) > 1)
      logStatus<<"broadcast data"<<Log::endl;
    Parallel::broadCast(rUpper,  0, comm);
    Parallel::broadCast(rLower,  0, comm);
    Parallel::broadCast(rho,     0, comm);
    Parallel::broadCast(lambda,  0, comm);
    Parallel::broadCast(phi,     0, comm);

    // precompute integral_sin, integral_cos
    // -------------------------------------
    Matrix cosm(lambda.size()-1, maxDegree+1);
    Matrix sinm(lambda.size()-1, maxDegree+1);
    for(UInt i=0; i<lambda.size()-1; i++)
    {
      cosm(i,0) = std::remainder(lambda.at(i+1)-lambda.at(i), 2*PI);
      for(UInt m=1; m<=maxDegree; m++)
      {
        cosm(i,m) =  (std::sin(m*lambda.at(i+1)) - std::sin(m*lambda.at(i)))/m;
        sinm(i,m) = -(std::cos(m*lambda.at(i+1)) - std::cos(m*lambda.at(i)))/m;
      }
    }

    // computing quadrature formular
    // -----------------------------
    logStatus<<"computing quadrature formular"<<Log::endl;
    Matrix cnmExt, snmExt, cnmInt, snmInt;
    if(!fileNameOutExterior.empty()) cnmExt = Matrix(maxDegree+1, Matrix::TRIANGULAR, Matrix::LOWER);
    if(!fileNameOutExterior.empty()) snmExt = Matrix(maxDegree+1, Matrix::TRIANGULAR, Matrix::LOWER);
    if(!fileNameOutInterior.empty()) cnmInt = Matrix(maxDegree+1, Matrix::TRIANGULAR, Matrix::LOWER);
    if(!fileNameOutInterior.empty()) snmInt = Matrix(maxDegree+1, Matrix::TRIANGULAR, Matrix::LOWER);
    Parallel::forEach(phi.size()-1, [&](UInt i)
    {
      const Matrix Pnm = LegendreFunction::integral(std::sin(std::min(phi.at(i), phi.at(i+1))),
                                                    std::sin(std::max(phi.at(i), phi.at(i+1))), maxDegree);
      // const Matrix Pnm = LegendreFunction::compute(std::sin(0.5*(phi.at(i+1)+phi.at(i))), maxDegree)
      //                  * std::fabs(std::sin(phi.at(i+1))-std::sin(phi.at(i))); // integral cos(phi) dPhi

      if(!fileNameOutExterior.empty())
      {
        Matrix fExt(lambda.size()-1, maxDegree+1);
        for(UInt k=0; k<lambda.size()-1; k++)
          if(rho(i,k) && (std::fabs(rUpper(i,k)-rLower(i,k)) > 0.001))
          {
            const Double term = factor * rho(i,k) * GRAVITATIONALCONSTANT/GM * R*R*R;
            const Double r1R  = rLower(i,k)/R;
            const Double r2R  = rUpper(i,k)/R;
            Double r1RnExt = term * std::pow(r1R, minDegree+3);
            Double r2RnExt = term * std::pow(r2R, minDegree+3);
            for(UInt n=minDegree; n<=maxDegree; n++)
            {
              fExt(k,n) = (r2RnExt-r1RnExt)/((2.*n+1)*(n+3.));
              r1RnExt *= r1R;
              r2RnExt *= r2R;
            } // for(n)
          } // for(i)

        for(UInt n=minDegree; n<=maxDegree; n++)
          for(UInt m=0; m<=n; m++)
          {
            cnmExt(n,m) += Pnm(n,m) * inner(cosm.column(m), fExt.column(n));
            snmExt(n,m) += Pnm(n,m) * inner(sinm.column(m), fExt.column(n));
          }
      } // if(!fileNameOutExterior.empty())

      if(!fileNameOutInterior.empty())
      {
        Matrix fInt(lambda.size()-1, maxDegree+1);
        for(UInt k=0; k<lambda.size()-1; k++)
         if(rho(i,k) && (std::fabs(rUpper(i,k)-rLower(i,k)) > 0.001))
         {
            const Double term = factor * rho(i,k) * GRAVITATIONALCONSTANT/GM * R*R*R;
            const Double Rr1  = R/rLower(i,k);
            const Double Rr2  = R/rUpper(i,k);
            Double r1RnInt = term * std::pow(Rr1, minDegree-2.);
            Double r2RnInt = term * std::pow(Rr2, minDegree-2.);
            for(UInt n=minDegree; n<=maxDegree; n++)
            {
              if(n != 2)
                fInt(k,n) = (r2RnInt-r1RnInt)/((2*n+1)*(2.-n));
              else
                fInt(k,n) = term * std::log(rUpper(i,k)/rLower(i,k))/(2*n+1);
              r1RnInt *= Rr1;
              r2RnInt *= Rr2;
            } // for(n)
          } // for(i)

        for(UInt n=minDegree; n<=maxDegree; n++)
          for(UInt m=0; m<=n; m++)
          {
            cnmInt(n,m) += Pnm(n,m) * inner(cosm.column(m), fInt.column(n));
            snmInt(n,m) += Pnm(n,m) * inner(sinm.column(m), fInt.column(n));
          }
      } // if(!fileNameOutInterior.empty())
    }, comm);
    if(!fileNameOutExterior.empty()) Parallel::reduceSum(cnmExt, 0, comm);
    if(!fileNameOutExterior.empty()) Parallel::reduceSum(snmExt, 0, comm);
    if(!fileNameOutInterior.empty()) Parallel::reduceSum(cnmInt, 0, comm);
    if(!fileNameOutInterior.empty()) Parallel::reduceSum(snmInt, 0, comm);

    // save potential coefficients
    // ---------------------------
    if(Parallel::isMaster(comm) && !fileNameOutExterior.empty())
    {
      logStatus<<"write potential coefficients to file <"<<fileNameOutExterior<<">"<<Log::endl;
      writeFileSphericalHarmonics(fileNameOutExterior, SphericalHarmonics(GM, R, cnmExt, snmExt));
    }

    if(Parallel::isMaster(comm) && !fileNameOutInterior.empty())
    {
      logStatus<<"write potential coefficients (interior) to file <"<<fileNameOutInterior<<">"<<Log::endl;
      writeFileSphericalHarmonics(fileNameOutInterior, SphericalHarmonics(GM, R, cnmInt, snmInt, TRUE));
    }
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/