1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
/***********************************************/
/**
* @file griddedTopography2PotentialCoefficients.cpp
*
* @brief Estimate potential coefficients from digital terrain models.
*
* @author Torsten Mayer-Guerr
* @date 2011-11-01
*/
/***********************************************/
// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
Estimate potential coefficients from digital terrain models.
Coefficients for interior $(1/r)^{n+1}$ and exterior ($r^n$) are computed.
)";
/***********************************************/
#include "programs/program.h"
#include "base/legendreFunction.h"
#include "parser/dataVariables.h"
#include "files/fileGriddedData.h"
#include "files/fileSphericalHarmonics.h"
#include "misc/miscGriddedData.h"
/***** CLASS ***********************************/
/** @brief Estimate potential coefficients from digital terrain models.
* @ingroup programsGroup */
class GriddedTopography2PotentialCoefficients
{
public:
void run(Config &config, Parallel::CommunicatorPtr comm);
};
GROOPS_REGISTER_PROGRAM(GriddedTopography2PotentialCoefficients, PARALLEL, "Estimate potential coefficients from digital terrain models", Grid, PotentialCoefficients)
/***********************************************/
void GriddedTopography2PotentialCoefficients::run(Config &config, Parallel::CommunicatorPtr comm)
{
try
{
FileName fileNameOutExterior, fileNameOutInterior;
FileName fileNameInGrid;
ExpressionVariablePtr expressionUpper, expressionLower, expressionRho;
Double factor;
UInt minDegree, maxDegree;
Double GM, R;
readConfig(config, "outputfilePotentialCoefficients", fileNameOutExterior, Config::OPTIONAL, "", "");
readConfig(config, "outputfilePotentialCoefficientsInterior", fileNameOutInterior, Config::OPTIONAL, "", "");
readConfig(config, "inputfileGriddedData", fileNameInGrid, Config::MUSTSET, "", "Digital Terrain Model");
readConfig(config, "density", expressionRho, Config::DEFAULT, "2670", "expression [kg/m^3]");
readConfig(config, "radialUpperBound", expressionUpper, Config::DEFAULT, "data0", "expression (variables 'L', 'B', 'height', 'data', and 'area' are taken from the gridded data");
readConfig(config, "radialLowerBound", expressionLower, Config::DEFAULT, "0", "expression (variables 'L', 'B', 'height', 'data', and 'area' are taken from the gridded data");
readConfig(config, "factor", factor, Config::DEFAULT, "1.0", "the result is multiplied by this factor");
readConfig(config, "minDegree", minDegree, Config::DEFAULT, "0", "");
readConfig(config, "maxDegree", maxDegree, Config::MUSTSET, "", "");
readConfig(config, "GM", GM, Config::DEFAULT, STRING_DEFAULT_GM, "Geocentric gravitational constant");
readConfig(config, "R", R, Config::DEFAULT, STRING_DEFAULT_R, "reference radius");
if(isCreateSchema(config)) return;
std::vector<Double> lambda, phi;
Matrix rLower, rUpper, rho;
if(Parallel::isMaster(comm))
{
// read rectangular grid
// ---------------------
logStatus<<"read grid from file <"<<fileNameInGrid<<">"<<Log::endl;
GriddedDataRectangular grid;
readFileGriddedData(fileNameInGrid, grid);
MiscGriddedData::printStatistics(grid);
// evaluate upper and lower height
// -------------------------------
logStatus<<"evaluate upper and lower height"<<Log::endl;
VariableList varList;
addDataVariables(grid, varList);
expressionUpper->simplify(varList);
expressionLower->simplify(varList);
expressionRho ->simplify(varList);
std::vector<Double> radius(grid.heights.size());
for(UInt i=0; i<radius.size(); i++)
radius.at(i) = grid.ellipsoid(Angle(0), grid.latitudes.at(i), grid.heights.at(i)).r();
rLower = rUpper = rho = Matrix(grid.latitudes.size(), grid.longitudes.size());
Single::forEach(grid.latitudes.size(), [&](UInt i)
{
for(UInt k=0; k<grid.longitudes.size(); k++)
{
evaluateDataVariables(grid, i, k, varList);
rUpper(i,k) = radius.at(i) + expressionUpper->evaluate(varList);
rLower(i,k) = radius.at(i) + expressionLower->evaluate(varList);
rho(i,k) = expressionRho->evaluate(varList);
}
});
grid.cellBorders(lambda, phi);
for(UInt i=0; i<phi.size(); i++)
phi.at(i) = grid.ellipsoid(Angle(0), Angle(phi.at(i)), 0.).phi(); // geocentric
} // if(Parallel::isMaster(comm))
if(Parallel::size(comm) > 1)
logStatus<<"broadcast data"<<Log::endl;
Parallel::broadCast(rUpper, 0, comm);
Parallel::broadCast(rLower, 0, comm);
Parallel::broadCast(rho, 0, comm);
Parallel::broadCast(lambda, 0, comm);
Parallel::broadCast(phi, 0, comm);
// precompute integral_sin, integral_cos
// -------------------------------------
Matrix cosm(lambda.size()-1, maxDegree+1);
Matrix sinm(lambda.size()-1, maxDegree+1);
for(UInt i=0; i<lambda.size()-1; i++)
{
cosm(i,0) = std::remainder(lambda.at(i+1)-lambda.at(i), 2*PI);
for(UInt m=1; m<=maxDegree; m++)
{
cosm(i,m) = (std::sin(m*lambda.at(i+1)) - std::sin(m*lambda.at(i)))/m;
sinm(i,m) = -(std::cos(m*lambda.at(i+1)) - std::cos(m*lambda.at(i)))/m;
}
}
// computing quadrature formular
// -----------------------------
logStatus<<"computing quadrature formular"<<Log::endl;
Matrix cnmExt, snmExt, cnmInt, snmInt;
if(!fileNameOutExterior.empty()) cnmExt = Matrix(maxDegree+1, Matrix::TRIANGULAR, Matrix::LOWER);
if(!fileNameOutExterior.empty()) snmExt = Matrix(maxDegree+1, Matrix::TRIANGULAR, Matrix::LOWER);
if(!fileNameOutInterior.empty()) cnmInt = Matrix(maxDegree+1, Matrix::TRIANGULAR, Matrix::LOWER);
if(!fileNameOutInterior.empty()) snmInt = Matrix(maxDegree+1, Matrix::TRIANGULAR, Matrix::LOWER);
Parallel::forEach(phi.size()-1, [&](UInt i)
{
const Matrix Pnm = LegendreFunction::integral(std::sin(std::min(phi.at(i), phi.at(i+1))),
std::sin(std::max(phi.at(i), phi.at(i+1))), maxDegree);
// const Matrix Pnm = LegendreFunction::compute(std::sin(0.5*(phi.at(i+1)+phi.at(i))), maxDegree)
// * std::fabs(std::sin(phi.at(i+1))-std::sin(phi.at(i))); // integral cos(phi) dPhi
if(!fileNameOutExterior.empty())
{
Matrix fExt(lambda.size()-1, maxDegree+1);
for(UInt k=0; k<lambda.size()-1; k++)
if(rho(i,k) && (std::fabs(rUpper(i,k)-rLower(i,k)) > 0.001))
{
const Double term = factor * rho(i,k) * GRAVITATIONALCONSTANT/GM * R*R*R;
const Double r1R = rLower(i,k)/R;
const Double r2R = rUpper(i,k)/R;
Double r1RnExt = term * std::pow(r1R, minDegree+3);
Double r2RnExt = term * std::pow(r2R, minDegree+3);
for(UInt n=minDegree; n<=maxDegree; n++)
{
fExt(k,n) = (r2RnExt-r1RnExt)/((2.*n+1)*(n+3.));
r1RnExt *= r1R;
r2RnExt *= r2R;
} // for(n)
} // for(i)
for(UInt n=minDegree; n<=maxDegree; n++)
for(UInt m=0; m<=n; m++)
{
cnmExt(n,m) += Pnm(n,m) * inner(cosm.column(m), fExt.column(n));
snmExt(n,m) += Pnm(n,m) * inner(sinm.column(m), fExt.column(n));
}
} // if(!fileNameOutExterior.empty())
if(!fileNameOutInterior.empty())
{
Matrix fInt(lambda.size()-1, maxDegree+1);
for(UInt k=0; k<lambda.size()-1; k++)
if(rho(i,k) && (std::fabs(rUpper(i,k)-rLower(i,k)) > 0.001))
{
const Double term = factor * rho(i,k) * GRAVITATIONALCONSTANT/GM * R*R*R;
const Double Rr1 = R/rLower(i,k);
const Double Rr2 = R/rUpper(i,k);
Double r1RnInt = term * std::pow(Rr1, minDegree-2.);
Double r2RnInt = term * std::pow(Rr2, minDegree-2.);
for(UInt n=minDegree; n<=maxDegree; n++)
{
if(n != 2)
fInt(k,n) = (r2RnInt-r1RnInt)/((2*n+1)*(2.-n));
else
fInt(k,n) = term * std::log(rUpper(i,k)/rLower(i,k))/(2*n+1);
r1RnInt *= Rr1;
r2RnInt *= Rr2;
} // for(n)
} // for(i)
for(UInt n=minDegree; n<=maxDegree; n++)
for(UInt m=0; m<=n; m++)
{
cnmInt(n,m) += Pnm(n,m) * inner(cosm.column(m), fInt.column(n));
snmInt(n,m) += Pnm(n,m) * inner(sinm.column(m), fInt.column(n));
}
} // if(!fileNameOutInterior.empty())
}, comm);
if(!fileNameOutExterior.empty()) Parallel::reduceSum(cnmExt, 0, comm);
if(!fileNameOutExterior.empty()) Parallel::reduceSum(snmExt, 0, comm);
if(!fileNameOutInterior.empty()) Parallel::reduceSum(cnmInt, 0, comm);
if(!fileNameOutInterior.empty()) Parallel::reduceSum(snmInt, 0, comm);
// save potential coefficients
// ---------------------------
if(Parallel::isMaster(comm) && !fileNameOutExterior.empty())
{
logStatus<<"write potential coefficients to file <"<<fileNameOutExterior<<">"<<Log::endl;
writeFileSphericalHarmonics(fileNameOutExterior, SphericalHarmonics(GM, R, cnmExt, snmExt));
}
if(Parallel::isMaster(comm) && !fileNameOutInterior.empty())
{
logStatus<<"write potential coefficients (interior) to file <"<<fileNameOutInterior<<">"<<Log::endl;
writeFileSphericalHarmonics(fileNameOutInterior, SphericalHarmonics(GM, R, cnmInt, snmInt, TRUE));
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|