1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
/***********************************************/
/**
* @file instrument2CovarianceFunctionVCE.cpp
*
* @brief Covariance functions via variance component estimation.
*
* @author Torsten Mayer-Guerr
* @date 2017-07-09
*
*/
/***********************************************/
// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This estimates a covariance function of \configFile{inputfileInstrument}{instrument}
for all selected columns with \config{startDataFields} and \config{countDataFields}.
The estimation is performed robustly via variance component estimation.
Bad arcs are downweigthed and the accuracies can be written with \configFile{outputfileSigmasPerArc}{matrix}.
The length of the covariance functions are determined by the longest arc.
Additionaly the data can be detrended with \configClass{parameter}{parametrizationTemporalType}
and \configClass{parameterPerArc}{parametrizationTemporalType}.
)";
/***********************************************/
#include "programs/program.h"
#include "files/fileMatrix.h"
#include "files/fileInstrument.h"
#include "classes/parametrizationTemporal/parametrizationTemporal.h"
#include "misc/varianceComponentEstimation.h"
/***** CLASS ***********************************/
/** @brief Covariance functions via variance component estimation.
* @ingroup programsGroup */
class Instrument2CovarianceFunctionVCE
{
Epoch::Type arcType;
std::vector<std::vector<Time>> arcTimes;
std::vector<Matrix> arcData;
UInt startData, countData;
ParametrizationTemporalPtr parameter;
ParametrizationTemporalPtr parameterPerArc;
Matrix N; // normal equation matrix
Vector n; // right hand sides
Vector x; // solution
Matrix Wz; // monte carlo vector for redundancy computation
Double lPl; // =l'Pl, weighted norm of the observations
UInt obsCount; // number of observations
std::vector<Matrix> W; // cholesky of the covariance matrix (per data column)
Vector sigma, sigmaNew; // per arc
Matrix CosTransform;
Matrix covFunc;
Matrix Psd;
Matrix ePe, redundancy; // one row for each frequency, one column for each component
void computeObservationEquation(UInt arcNo, std::vector<Matrix> &W, Vector &Wl, Matrix &WA, Matrix &WB);
void buildNormals(UInt arcNo);
void computeRedundancies(UInt arcNo);
Arc computeResiduals(UInt arcNo);
public:
void run(Config &config, Parallel::CommunicatorPtr comm);
};
GROOPS_REGISTER_PROGRAM(Instrument2CovarianceFunctionVCE, PARALLEL, "Covariance functions via variance component estimation", Instrument, Covariance)
/***********************************************/
void Instrument2CovarianceFunctionVCE::run(Config &config, Parallel::CommunicatorPtr comm)
{
try
{
FileName fileNameCov, fileNameArcSigma, fileNameResiduals, fileNameSolution;
FileName fileNameIn;
UInt iterCount;
countData = MAX_UINT;
readConfig(config, "outputfileCovarianceFunction", fileNameCov, Config::MUSTSET, "", "covariance functions");
readConfig(config, "outputfileSigmasPerArc", fileNameArcSigma, Config::OPTIONAL, "", "accuracies of each arc");
readConfig(config, "outputfileResiduals", fileNameResiduals, Config::OPTIONAL, "", "");
readConfig(config, "outputfileSolution", fileNameSolution, Config::OPTIONAL, "", "estimated parameter vector (global part only)");
readConfig(config, "inputfileInstrument", fileNameIn, Config::MUSTSET, "", "");
readConfig(config, "startDataFields", startData, Config::DEFAULT, "0", "start");
readConfig(config, "countDataFields", countData, Config::OPTIONAL, "", "number of data fields (default: all after start)");
readConfig(config, "parameter", parameter, Config::DEFAULT, "", "data is reduced by temporal representation");
readConfig(config, "parameterPerArc", parameterPerArc, Config::DEFAULT, "", "data is reduced by temporal representation");
readConfig(config, "iterationCount", iterCount, Config::DEFAULT, "5", "number of iterations for the estimation");
if(isCreateSchema(config)) return;
// =============================================
// Determine max. length of ovariance functions
// --------------------------------------------
InstrumentFile instrumentFile(fileNameIn);
arcType = instrumentFile.getType();
const UInt arcCount = instrumentFile.arcCount();
if(arcCount < 5)
throw(Exception("Need at least 5 arcs for a reliable covariance estimation"));
UInt covLength = 0;
Double sampling = 0;
if(Parallel::isMaster(comm))
{
arcTimes.resize(arcCount);
arcData.resize(arcCount);
for(UInt arcNo=0; arcNo<arcCount; arcNo++)
{
Arc arc = instrumentFile.readArc(arcNo);
arcTimes.at(arcNo) = arc.times();
arcData.at(arcNo) = arc.matrix();
if(arc.size() > covLength)
sampling = medianSampling(arcTimes.at(arcNo)).seconds();
covLength = std::max(covLength, arc.size());
countData = std::min(countData, arcData.at(arcNo).columns()-1-startData);
}
}
Parallel::broadCast(arcTimes, 0, comm);
Parallel::broadCast(arcData, 0, comm);
Parallel::broadCast(countData, 0, comm);
Parallel::broadCast(covLength, 0, comm);
Parallel::broadCast(sampling, 0, comm);
// init arc sigmas
// ---------------
sigma = Vector(arcCount);
for(UInt arcNo=0; arcNo<arcCount; arcNo++)
sigma(arcNo) = 1.0;
// init covariance function
// ------------------------
CosTransform = Vce::cosTransform(covLength);
covFunc = Vce::readCovarianceFunction(FileName(), covLength, countData, sampling);
Psd = CosTransform * covFunc.column(1, countData);
W.resize(countData, Matrix(covLength, Matrix::SYMMETRIC));
for(UInt idData=0; idData<countData; idData++)
{
for(UInt z=0; z<covLength; z++)
for(UInt s=z; s<covLength; s++)
W.at(idData)(z,s) += covFunc(s-z, 1+idData);
cholesky(W.at(idData));
}
// =============================================
// Iteration
// ---------
for(UInt iter=0; iter<iterCount; iter++)
{
logStatus<<"starting iteration "<<iter+1<<Log::endl;
// solve normal equations
// ----------------------
if(parameter->parameterCount())
{
logStatus<<"accumulate system of normal equations"<<Log::endl;
N = Matrix(countData*parameter->parameterCount(), Matrix::SYMMETRIC);
n = Vector(countData*parameter->parameterCount());
lPl = 0;
obsCount = 0;
Parallel::forEach(arcCount, [this](UInt arcNo) {buildNormals(arcNo);}, comm);
// collect system of normal equations
// ----------------------------------
logStatus<<"collect system of normal equations"<<Log::endl;
Parallel::reduceSum(N, 0, comm);
Parallel::reduceSum(n, 0, comm);
Parallel::reduceSum(obsCount, 0, comm);
Parallel::reduceSum(lPl, 0, comm);
logStatus<<"solve system of normal equations"<<Log::endl;
if(Parallel::isMaster(comm))
{
x = solve(N, n);
logInfo<<" aposteriori sigma = "<<sqrt((lPl-inner(x, n))/(obsCount-x.rows()))<<Log::endl;
// N contains now the cholesky decomposition
Wz = Vce::monteCarlo(x.rows(), 100); // monte carlo vector for VCE
triangularSolve(1., N, Wz);
}
Parallel::broadCast(x, 0, comm);
Parallel::broadCast(Wz, 0, comm);
if(Parallel::isMaster(comm) && !fileNameSolution.empty())
{
logStatus<<"write solution to <"<<fileNameSolution<<">"<<Log::endl;
writeFileMatrix(fileNameSolution, x);
}
} // if(parameter->parameterCount())
Parallel::barrier(comm);
if(!fileNameResiduals.empty())
{
logStatus<<"compute residuals"<<Log::endl;
std::vector<Arc> arcs(arcCount);
Parallel::forEach(arcs, [this](UInt arcNo) {return computeResiduals(arcNo);}, comm);
if(Parallel::isMaster(comm))
{
logStatus<<"write residual file <"<<fileNameResiduals<<">"<<Log::endl;
InstrumentFile::write(fileNameResiduals, arcs);
}
}
logStatus<<"compute redundancies"<<Log::endl;
sigmaNew = Vector(arcCount);
ePe = redundancy = Matrix(covLength, countData);
Parallel::forEach(arcCount, [this](UInt arcNo) {computeRedundancies(arcNo);}, comm);
// sigmas per arc
// --------------
Parallel::reduceSum(sigmaNew, 0, comm);
if(Parallel::isMaster(comm))
{
sigma = sigmaNew;
const Double sigma0 = Vce::meanSigma(sigma);
sigma *= 1./sigma0;
logInfo<<" sigma per arc (median): "<<sigma0<<Log::endl;
if(!fileNameArcSigma.empty())
{
logStatus<<"write arc sigma file <"<<fileNameArcSigma<<">"<<Log::endl;
writeFileMatrix(fileNameArcSigma, sigma);
}
}
Parallel::broadCast(sigma, 0, comm);
// estimate new PSD through variance component estimation
// ------------------------------------------------------
logStatus<<"compute psd through variance component estimation"<<Log::endl;
Parallel::reduceSum(ePe, 0, comm);
Parallel::reduceSum(redundancy, 0, comm);
if(Parallel::isMaster(comm))
{
Double maxFactor = 0;
Vce::estimatePsd(ePe, redundancy, Psd, maxFactor);
logInfo<<" max. PSD adjustment factor: "<<maxFactor<<Log::endl;
} // if(Parallel::isMaster(comm))
Parallel::broadCast(Psd, 0, comm);
copy(CosTransform*Psd, covFunc.column(1, Psd.columns())); // compute new covariance function
for(UInt idData=0; idData<countData; idData++)
{
W.at(idData) = Matrix(covLength, Matrix::SYMMETRIC);
for(UInt z=0; z<covLength; z++)
for(UInt s=z; s<covLength; s++)
W.at(idData)(z,s) += covFunc(s-z, 1+idData);
cholesky(W.at(idData));
}
if(Parallel::isMaster(comm) && !fileNameCov.empty())
{
logStatus<<"write covariance function file <"<<fileNameCov<<">"<<Log::endl;
writeFileMatrix(fileNameCov, covFunc);
}
} // for(iter)
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void Instrument2CovarianceFunctionVCE::computeObservationEquation(UInt arcNo, std::vector<Matrix> &W, Vector &Wl, Matrix &WA, Matrix &WB)
{
try
{
const UInt countEpoch = arcData.at(arcNo).rows();
parameterPerArc->setInterval(arcTimes.at(arcNo).front(), arcTimes.at(arcNo).back()+medianSampling(arcTimes.at(arcNo)), TRUE);
W.resize(countData);
Wl = Vector(countEpoch*countData);
WA = Matrix(Wl.rows(), countData*parameter->parameterCount());
WB = Matrix(Wl.rows(), countData*parameterPerArc->parameterCount());
for(UInt idData=0; idData<countData; idData++)
{
// observations
copy(arcData.at(arcNo).column(1+startData+idData), Wl.row(idData*countEpoch, countEpoch));
// design matrix
for(UInt idEpoch=0; idEpoch<arcTimes.at(arcNo).size(); idEpoch++)
{
if(parameter->parameterCount())
copy(parameter->factors(arcTimes.at(arcNo).at(idEpoch)).trans(),
WA.slice(idData*countEpoch+idEpoch, idData*parameter->parameterCount(), 1, parameter->parameterCount()));
if(parameterPerArc->parameterCount())
copy(parameterPerArc->factors(arcTimes.at(arcNo).at(idEpoch)).trans(),
WB.slice(idData*countEpoch+idEpoch, idData*parameterPerArc->parameterCount(), 1, parameterPerArc->parameterCount()));
}
// decorrelation
W.at(idData) = sigma(arcNo) * this->W.at(idData).slice(0, 0, countEpoch, countEpoch);
if(Wl.size()) triangularSolve(1., W.at(idData).trans(), Wl.row(idData*countEpoch, countEpoch));
if(WA.size()) triangularSolve(1., W.at(idData).trans(), WA.row(idData*countEpoch, countEpoch));
if(WB.size()) triangularSolve(1., W.at(idData).trans(), WB.row(idData*countEpoch, countEpoch));
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void Instrument2CovarianceFunctionVCE::buildNormals(UInt arcNo)
{
try
{
std::vector<Matrix> W;
Vector Wl;
Matrix WA, WB;
computeObservationEquation(arcNo, W, Wl, WA, WB);
// eliminate arc dependent parameters
Vector tau;
if(WB.size())
{
tau = QR_decomposition(WB);
QTransMult(WB, tau, Wl); // transform observations: l:= Q'l
QTransMult(WB, tau, WA); // transform design matrix A:=Q'A
}
// use only nullspace of design matrix WB
MatrixSlice A_bar( WA.row(WB.columns(), WA.rows()-WB.columns()) );
MatrixSlice l_bar( Wl.row(WB.columns(), Wl.rows()-WB.columns()) );
// build normals
this->lPl += quadsum(l_bar);
this->obsCount += l_bar.rows();
matMult(1., A_bar.trans(), l_bar, n);
rankKUpdate(1., A_bar, N);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void Instrument2CovarianceFunctionVCE::computeRedundancies(UInt arcNo)
{
try
{
std::vector<Matrix> W;
Vector Wl;
Matrix WA, WB;
computeObservationEquation(arcNo, W, Wl, WA, WB);
// eliminate arc dependent parameters
// ----------------------------------
if(WB.size())
{
Vector tau = QR_decomposition(WB);
QTransMult(WB, tau, Wl); // transform observations: l:= Q'l
Wl.row(0, WB.columns()).setNull(); // residuals: remove WB*x
QMult(WB, tau, Wl); // back transformation
if(WA.size())
{
QTransMult(WB, tau, WA); // transform design matrix A:=Q'A
WA.row(0, WB.columns()).setNull(); // residuals: remove WB*x
QMult(WB, tau, WA); // back transformation
}
generateQ(WB, tau);
WB.setType(Matrix::GENERAL);
}
// decorrelated residuals
// ----------------------
Matrix We = Wl;
Matrix WAz(Wl.rows(), Wz.columns());
if(WA.size()) matMult(-1., WA, x, We);
if(WA.size()) matMult( 1., WA, Wz, WAz);
// Variance component estimation
// -----------------------------
const UInt countEpoch = Wl.rows()/countData;
std::vector<UInt> index(countEpoch);
for(UInt i=0; i<index.size(); i++)
index.at(i) = i;
Double ePeSum=0, redundancySum=0;
for(UInt idData=0; idData<countData; idData++)
{
Matrix R;
Vector WWe;
Vce::redundancy(W.at(idData),
We.row(idData*countEpoch, countEpoch),
WAz.row(idData*countEpoch, countEpoch),
WB.row(idData*countEpoch, countEpoch),
R, WWe);
Vce::psd(R, WWe, index, sigma(arcNo), CosTransform, Psd.column(idData),
ePe.column(idData), redundancy.column(idData), ePeSum, redundancySum);
}
sigmaNew(arcNo) = sqrt(ePeSum/redundancySum) * sigma(arcNo);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Arc Instrument2CovarianceFunctionVCE::computeResiduals(UInt arcNo)
{
try
{
std::vector<Matrix> W;
Vector Wl;
Matrix WA, WB;
computeObservationEquation(arcNo, W, Wl, WA, WB);
// decorrelated residuals
if(WA.size())
matMult(-1., WA, x, Wl);
if(WB.size())
reduceLeastSquaresFit(WB, Wl);
// remove decorrelation
const UInt countEpoch = Wl.rows()/countData;
for(UInt idData=0; idData<countData; idData++)
triangularMult(1., W.at(idData).trans(), Wl.row(idData*countEpoch, countEpoch));
// observations
Matrix data = arcData.at(arcNo);
for(UInt idData=0; idData<countData; idData++)
copy(Wl.row(idData*countEpoch, countEpoch), data.column(1+startData+idData));
return Arc(arcTimes.at(arcNo), arcData.at(arcNo), arcType);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|