File: instrument2PowerSpectralDensity.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (163 lines) | stat: -rw-r--r-- 5,692 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/***********************************************/
/**
* @file instrument2PowerSpectralDensity.cpp
*
* @brief Compute PSD from instrument files.
*
* @author Andreas Kvas
* @date 2016-02-02
*
*/
/***********************************************/

// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program computes the power spectral density (PSD) for all data fields in an \file{instrument file}{instrument}.
The PSD is computed using Lomb's method. For each arc and each frequency $f$, a sinusoid is fit to the data
\begin{equation}
  l_i = a \cos(2\pi f t_i) + b \sin(2\pi f t_i) + e_i
\end{equation}

The PSD for this frequency is then computed by forming the square sum of adjusted observations:
\begin{equation}
  P(f) = \sum_i \hat{l}^2_i.
\end{equation}

The resulting PSD is the average over all arcs. For regularly sampled time series,
this method yields the same results as FFT based PSD estimates.

A regular frequency grid based on the longest arc and the median sampling is computed.
The maximum number of epochs per arc is determined by
\begin{equation}
  N = \frac{t_{\text{end}} - t_{\text{start}}}{\Delta t_{\text{median}} } + 1,
\end{equation}
the Nyquist frequency is given by
\begin{equation}
  f_{\text{nyq}} = \frac{1}{2\Delta t_{\text{median}}}.
\end{equation}

If it is suspected that \configFile{inputfileInstrument}{instrument} contains secular variations,
the input should be detrended using \program{InstrumentDetrend}.

See also \program{Instrument2CovarianceFunctionVCE},
\program{CovarianceFunction2PowerSpectralDensity}, \program{PowerSpectralDensity2CovarianceFunction}.
)";

/***********************************************/

#include "programs/program.h"
#include "base/fourier.h"
#include "files/fileMatrix.h"
#include "files/fileInstrument.h"

/***** CLASS ***********************************/

/** @brief Compute PSD from instrument files.
* @ingroup programsGroup */
class Instrument2PowerSpectralDensity
{
public:
  void run(Config &config, Parallel::CommunicatorPtr comm);
};

GROOPS_REGISTER_PROGRAM(Instrument2PowerSpectralDensity, PARALLEL, "Compute PSD from instrument files.", Instrument, Covariance)
GROOPS_RENAMED_PROGRAM(InstrumentComputePSD, Instrument2PowerSpectralDensity, date2time(2018, 7, 18))
GROOPS_RENAMED_PROGRAM(InstrumentComputePsd, Instrument2PowerSpectralDensity, date2time(2020, 7, 7))

/***********************************************/

void Instrument2PowerSpectralDensity::run(Config &config, Parallel::CommunicatorPtr comm)
{
  try
  {
    FileName fileNameInstrument, fileNamePSD;

    readConfig(config, "outputfilePSD",        fileNamePSD,         Config::MUSTSET,  "", "estimated PSD: column 0: frequency vector, column 1-(n-1): PSD estimate for each channel");
    readConfig(config, "inputfileInstrument",  fileNameInstrument,  Config::MUSTSET,  "", "");
    if(isCreateSchema(config)) return;

    logStatus<<"read instrument data"<<Log::endl;
    InstrumentFile instrumentFile(fileNameInstrument);
    const UInt arcCount  = instrumentFile.arcCount();
    const UInt dataCount = instrumentFile.dataCount(TRUE/*mustDefined*/);

    Vector freqs;
    UInt   arcEpochCount;
    Double sampling = 1.0;
    if(Parallel::isMaster(comm))
    {
      std::vector<Time> times;
      Time maxArcLen;
      for(UInt arcNo=0; arcNo<arcCount; arcNo++)
      {
        Arc arc = instrumentFile.readArc(arcNo);
        if(arc.size() == 0)
          continue;
        std::vector<Time> arcTimes = arc.times();
        maxArcLen = std::max(arcTimes.back() - arcTimes.front(), maxArcLen);
        times.insert(times.end(), arcTimes.begin(), arcTimes.end());
      }
      sampling      = medianSampling(times).seconds();
      arcEpochCount = static_cast<UInt>(std::round(maxArcLen.seconds()/sampling)+1);
      logInfo<<"  maximum arc length: "<<arcEpochCount<<" epochs"<<Log::endl;
      logInfo<<"  median sampling:    "<<sampling<<" seconds"<<Log::endl;

      freqs = Fourier::frequencies(arcEpochCount, sampling);
    }
    Parallel::broadCast(freqs, 0, comm);
    Parallel::broadCast(arcEpochCount, 0, comm);

    logStatus<<"compute PSD"<<Log::endl;
    Matrix PSD(freqs.rows(), dataCount+1);
    Parallel::forEach(arcCount, [&](UInt arcNo)
    {
      Arc arc = instrumentFile.readArc(arcNo);
      Matrix data = arc.matrix();

      // time vector
      Vector t(arc.size());
      for(UInt i=0; i<t.rows(); i++)
        t(i) = (arc.at(i).time-arc.at(0).time).seconds();

      // square sum of observations
      Vector lPl(data.columns()-1);
      for(UInt i=0; i<lPl.rows(); i++)
        lPl(i) = quadsum(data.column(i+1));

      // estimate the power of each frequency
      for(UInt k=0; k<freqs.size(); k++)
      {
        Matrix l = data.column(1, data.columns()-1);
        Matrix A(l.rows(), 2);
        const Double f = 2*PI*freqs.at(k);
        for(UInt i=0; i<A.rows(); i++)
        {
          A(i, 0) = std::cos(f*t(i));
          A(i, 1) = std::sin(f*t(i));
        }
        if((freqs.at(k) == 0) || (std::fabs(freqs.at(k)*sampling-0.5) < 1e-5)) // zero or nyquist freq?
          A = A.column(0);

        reduceLeastSquaresFit(A, l); // l = e_hat
        for(UInt i=0; i<l.columns(); i++)
          PSD(k, i+1) += lPl(i) - quadsum(l.column(i));
      }
    }, comm);
    Parallel::reduceSum(PSD, 0, comm);

    if(Parallel::isMaster(comm))
    {
      PSD *= sampling/arcCount; // PSD unit: input^2/Hz
      copy(freqs, PSD.column(0));
      logStatus<<"write PSD to file <"<<fileNamePSD<<">"<<Log::endl;
      writeFileMatrix(fileNamePSD, PSD);
    }
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/