1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
/***********************************************/
/**
* @file instrument2RmsPlotGrid.cpp
*
* @brief Compute RMS plot grid from instrument file(s) containing 3D data (e.g. orbits, station positions).
*
* @author Torsten Mayer-Guerr
* @author Sebastian Strasser
* @date 2016-11-20
*
*/
/***********************************************/
// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program computes an RMS plot grid from one or more \configFile{inputfileInstrument}{instrument}
containing 3D data (e.g. orbits or station positions), which can then be plotted as gridded data in \program{PlotGraph}.
The RMS is computed from the difference between \configFile{inputfileInstrument}{instrument} and
\configFile{inputfileInstrumentReference}{instrument}.
All instrument files must be synchronized (see \program{InstrumentSynchronize}).
Each separate \configFile{inputfileInstrument}{instrument} represents an entry (e.g. a satellite or station)
in the resulting grid. Therefore, providing, for example, 32 orbit files of GPS satellites
results in a grid with columns: mjd, id (0-31), rms.
The first three data columns of the instrument data are considered for computation of the RMS values.
The \config{factor} can be set to, for example, sqrt(3) to get 3D instead of 1D RMS values.
If \configClass{timeIntervals}{timeSeriesType} are provided, each \configFile{inputfileInstrument}{instrument}
and \configFile{inputfileInstrumentReference}{instrument} serves as a template with variable \verb|loopTime|.
This allows concatenation of instrument files, for example to create a month-long RMS plot grid from daily GPS
orbit files (see below).
Helmert parameters between the two frames can be estimated each epoch optionally if
\config{estimateShift}, \config{estimateScale}, or \config{estimateRotation} are set.
It uses a \reference{robust least squares adjustment}{fundamentals.robustLeastSquares}.
\fig{!hb}{0.8}{instrument2RmsPlotGrid}{fig:instrument2RmsPlotGrid}{Comparison of estimated GPS orbits with IGS final solution.}
)";
/***********************************************/
#include "programs/program.h"
#include "parser/dataVariables.h"
#include "files/fileMatrix.h"
#include "files/fileInstrument.h"
#include "classes/timeSeries/timeSeries.h"
#include "misc/varianceComponentEstimation.h"
/***** CLASS ***********************************/
/** @brief Compute RMS plot grid from instrument file(s) containing 3D data (e.g. orbits, station positions).
* @ingroup programsGroup */
class Instrument2RmsPlotGrid
{
public:
void run(Config &config, Parallel::CommunicatorPtr comm);
};
GROOPS_REGISTER_PROGRAM(Instrument2RmsPlotGrid, SINGLEPROCESS, "Compute RMS plot grid from instrument file(s) containing 3D data (e.g. orbits, station positions).", Instrument, Plot, Gnss)
/***********************************************/
void Instrument2RmsPlotGrid::run(Config &config, Parallel::CommunicatorPtr /*comm*/)
{
try
{
FileName fileNameOutRmsPlotGrid;
FileName fileNameHelmertTimeSeries;
std::vector<FileName> fileNameInInstrument, fileNameInInstrumentRef;
TimeSeriesPtr timesIntervalPtr;
Double factor;
Bool estimateShift, estimateScale, estimateRotation;
Double huber, huberPower;
UInt iterCount;
renameDeprecatedConfig(config, "intervals", "timeIntervals", date2time(2020, 7, 14));
readConfig(config, "outputfileRmsPlotGrid", fileNameOutRmsPlotGrid, Config::OPTIONAL, "", "columns: mjd, id, rms");
readConfig(config, "outputfileHelmertTimeSeries", fileNameHelmertTimeSeries, Config::OPTIONAL, "", "columns: mjd, tx, ty, tz, scale, rx, ry, rz");
readConfig(config, "inputfileInstrument", fileNameInInstrument, Config::MUSTSET, "", "one file per satellite/station");
readConfig(config, "inputfileInstrumentReference", fileNameInInstrumentRef, Config::MUSTSET, "", "one file per satellite/station, same order as above");
readConfig(config, "timeIntervals", timesIntervalPtr, Config::DEFAULT, "", "for {loopTime} variable in inputfile");
readConfig(config, "factor", factor, Config::DEFAULT, "1", "e.g. sqrt(3) for 3D RMS");
readConfig(config, "estimateShift", estimateShift, Config::DEFAULT, "1", "coordinate center every epoch");
readConfig(config, "estimateScale", estimateScale, Config::DEFAULT, "1", "scale factor of position every epoch");
readConfig(config, "estimateRotation", estimateRotation, Config::DEFAULT, "1", "rotation every epoch");
readConfig(config, "huber", huber, Config::DEFAULT, "2.5", "for robust least squares");
readConfig(config, "huberPower", huberPower, Config::DEFAULT, "1.5", "for robust least squares");
readConfig(config, "huberMaxIteration", iterCount, Config::DEFAULT, "30", "(maximum) number of iterations for robust estimation");
if(isCreateSchema(config)) return;
// ======================================================
// init time intervals
// -------------------
std::vector<Time> timesInterval;
if(timesIntervalPtr)
timesInterval = timesIntervalPtr->times();
VariableList fileNameVariableList;
if(timesInterval.size())
addTimeVariables(fileNameVariableList);
const UInt countInterval = timesInterval.size() ? timesInterval.size()-1 : 1;
const UInt countInstrument = fileNameInInstrument.size();
// ======================================================
// read instrument data and compute RMS plot grid
// -----------------------------------------
logStatus<<"Reading instrument data and computing RMS plot grid"<<Log::endl;
if(fileNameInInstrument.size() != fileNameInInstrumentRef.size())
throw Exception("Number of instrument and instrument reference files does not match: " + fileNameInInstrument.size() % "%i"s + " != " + fileNameInInstrumentRef.size() % "%i"s);
Matrix RmsPlotGrid(countInterval*countInstrument,3);
std::vector<Vector> helmertTimeSeries;
UInt countOutput = 0;
Single::forEach(countInterval, [&](UInt idInterval)
{
Time time;
if(timesInterval.size())
{
evaluateTimeVariables(idInterval, timesInterval.at(idInterval), timesInterval.at(idInterval+1), fileNameVariableList);
time = 0.5*(timesInterval.at(idInterval+1)+timesInterval.at(idInterval));
}
// read instrument data of current interval
// ----------------------------------------
UInt epochCount = MAX_UINT;
std::vector<Arc> arcsInstrument(countInstrument), arcsInstrumentRef(countInstrument);
for(UInt idInstrument=0; idInstrument<countInstrument; idInstrument++)
{
Arc arc;
try
{
arc = InstrumentFile::read(fileNameInInstrument.at(idInstrument)(fileNameVariableList));
}
catch(std::exception &) {} // --> arc.size() == 0, see subsequent if()
if(!arc.size())
{
logWarning << "Instrument file <" << fileNameInInstrument.at(idInstrument)(fileNameVariableList) << "> not found or empty, skipping." << Log::endl;
continue;
}
Arc arcRef;
try
{
arcRef = InstrumentFile::read(fileNameInInstrumentRef.at(idInstrument)(fileNameVariableList));
}
catch(std::exception &) {} // --> arcRef.size() == 0, see subsequent if()
if(!arcRef.size())
{
logWarning << "Instrument reference file <" << fileNameInInstrumentRef.at(idInstrument)(fileNameVariableList) << "> not found or empty, skipping." << Log::endl;
continue;
}
// check if data of reference file matches instrument file
if(arc.size() != arcRef.size())
throw Exception("Instrument and instrument reference epoch counts do not match: " + arc.size() % "%i"s + " != " + arcRef.size() % "%i"s + " for files <" +
fileNameInInstrument.at(idInstrument)(fileNameVariableList).str() + "> and <" + fileNameInInstrumentRef.at(idInstrument)(fileNameVariableList).str() + ">");
arcsInstrument.at(idInstrument) = arc;
arcsInstrumentRef.at(idInstrument) = arcRef;
epochCount = std::min(epochCount, arc.size());
}
if(epochCount == MAX_UINT)
{
logWarning<<"No instrument data found. continue with next epoch"<<Log::endl;
return;
}
// Estimate Helmert transformation
// -------------------------------
Matrix l(3*arcsInstrument.size(), epochCount);
for(UInt idEpoch=0; idEpoch<epochCount; idEpoch++)
{
Time timeEpoch;
Matrix A(3*arcsInstrument.size(), 3*estimateShift+estimateScale+3*estimateRotation);
for(UInt idInstrument=0; idInstrument<countInstrument; idInstrument++)
{
if(arcsInstrument.at(idInstrument).size() == 0)
continue;
timeEpoch = arcsInstrument.at(idInstrument).at(idEpoch).time;
const Vector3d pos(arcsInstrument.at(idInstrument).at(idEpoch).data().row(0,3));
const Vector3d posRef(arcsInstrumentRef.at(idInstrument).at(idEpoch).data().row(0,3));
const Vector3d diff = pos - posRef;
l(3*idInstrument+0, idEpoch) = diff.x();
l(3*idInstrument+1, idEpoch) = diff.y();
l(3*idInstrument+2, idEpoch) = diff.z();
UInt idx = 0;
if(estimateShift)
{
A(3*idInstrument+0, idx++) = 1;
A(3*idInstrument+1, idx++) = 1;
A(3*idInstrument+2, idx++) = 1;
}
if(estimateScale)
{
A(3*idInstrument+0, idx) = posRef.x()/DEFAULT_R;
A(3*idInstrument+1, idx) = posRef.y()/DEFAULT_R;
A(3*idInstrument+2, idx++) = posRef.z()/DEFAULT_R;
}
if(estimateRotation)
{
A(3*idInstrument+1, idx) = posRef.z()/DEFAULT_R; //rx
A(3*idInstrument+2, idx++) = -posRef.y()/DEFAULT_R; //rx
A(3*idInstrument+0, idx) = -posRef.z()/DEFAULT_R; //ry
A(3*idInstrument+2, idx++) = posRef.x()/DEFAULT_R; //ry
A(3*idInstrument+0, idx) = posRef.y()/DEFAULT_R; //rz
A(3*idInstrument+1, idx++) = -posRef.x()/DEFAULT_R; //rz
}
}
Vector x;
if(A.size())
{
Vector sigma;
x = Vce::robustLeastSquares(A, l.column(idEpoch), 3, huber, huberPower, iterCount, sigma);
l.column(idEpoch) -= A*x;
}
Vector h(8);
h(0) = timeEpoch.mjd();
UInt idx = 0;
if(estimateShift)
{
h(1) = x(idx++);
h(2) = x(idx++);
h(3) = x(idx++);
}
if(estimateScale)
{
h(4) = x(idx++)/DEFAULT_R;
}
if(estimateRotation)
{
h(5) = x(idx++)/DEFAULT_R;
h(6) = x(idx++)/DEFAULT_R;
h(7) = x(idx++)/DEFAULT_R;
}
helmertTimeSeries.push_back(h);
}
// compute RMS values of current interval
// -------------------------------------
for(UInt idInstrument=0; idInstrument<countInstrument; idInstrument++)
if(norm(l.row(3*idInstrument,3))>1e-10)
{
RmsPlotGrid(countOutput, 0) = time.mjd();
RmsPlotGrid(countOutput, 1) = idInstrument;
RmsPlotGrid(countOutput, 2) = factor * norm(l.row(3*idInstrument,3))/std::sqrt(3*l.columns()); // 1D RMS
countOutput++;
}
});
// ======================================================
// save file
// ---------
if(!fileNameOutRmsPlotGrid.empty())
{
logStatus<<"Write RMS plot grid to file <"<<fileNameOutRmsPlotGrid<<">"<<Log::endl;
writeFileMatrix(fileNameOutRmsPlotGrid, RmsPlotGrid.row(0, countOutput));
}
if(!fileNameHelmertTimeSeries.empty())
{
logStatus<<"Write Helmert time series to file <"<<fileNameHelmertTimeSeries<<">"<<Log::endl;
Matrix H(helmertTimeSeries.size(), 8);
for(UInt i=0; i<H.rows(); i++)
copy(helmertTimeSeries.at(i).trans(), H.row(i));
writeFileMatrix(fileNameHelmertTimeSeries, H);
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e);
}
}
/***********************************************/
|