1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
/***********************************************/
/**
* @file instrument2SpectralCoherence.cpp
*
* @brief Empirical computation of the spectral coherence between two instrument files.
*
* @author Andreas Kvas
* @date 2018-01-01
*
*/
/***********************************************/
// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program computes the spectral coherence between two \file{instrument files}{instrument}.
The (magnitude-squared) coherence is defined as
\begin{equation}
C_{xy}(f) = \frac{|P_{xy}(f)|^2}{P_{xx}(f)P_{yy}(f)}
\end{equation}
and is a measure in the range [0, 1] for the similarity of the signals $x$ and $y$ in frequency domain.
$P_{xy}$ is the cross-spectral density between $x$ and $y$ and $P_{xx}$, $P_{yy}$ are auto-spectral densities.
Auto- and cross-spectral densities are computed using Lomb's method (see \program{Instrument2PowerSpectralDensity} for details).
The resulting PSD is the average over all arcs. For regularly sampled time series,
this method yields the same results as FFT based PSD estimates.
A regular frequency grid based on the longest arc and the median sampling is computed.
The maximum number of epochs per arc is determined by
\begin{equation}
N = \frac{t_{\text{end}} - t_{\text{start}}}{\Delta t_{\text{median}} } + 1,
\end{equation}
the Nyquist frequency is given by
\begin{equation}
f_{\text{nyq}} = \frac{1}{2\Delta t_{\text{median}}}.
\end{equation}
If it is suspected that \configFile{inputfileInstrument}{instrument} contains secular variations,
the input should be detrended using \program{InstrumentDetrend}.
The \configFile{outputfileCoherence}{matrix} contains a matrix with the frequency vector as first column,
the coherence for each instrument channel is saved in the following columns.
)";
/***********************************************/
#include "programs/program.h"
#include "base/fourier.h"
#include "files/fileMatrix.h"
#include "files/fileInstrument.h"
/***** CLASS ***********************************/
/** @brief Empirical computation of the spectral coherence between two instrument files.
* @ingroup programsGroup */
class Instrument2SpectralCoherence
{
Matrix designMatrix(const Vector &t, Double f, Bool isNyquist = FALSE);
std::vector<std::vector<std::complex<Double>>> leastSquaresFourier(const Vector &freqs, const_MatrixSliceRef arcMatrix, Bool countEven);
public:
void run(Config &config, Parallel::CommunicatorPtr comm);
};
GROOPS_REGISTER_PROGRAM(Instrument2SpectralCoherence, PARALLEL, "Empirical computation of the spectral coherence between two instrument files.", Instrument, Statistics)
GROOPS_RENAMED_PROGRAM(InstrumentComputeSpectralCoherence, Instrument2SpectralCoherence, date2time(2020, 7, 7))
/***********************************************/
void Instrument2SpectralCoherence::run(Config &config, Parallel::CommunicatorPtr comm)
{
try
{
FileName outputName;
FileName inputName, inputNameReference;
readConfig(config, "outputfileCoherence", outputName, Config::MUSTSET, "", "column 1: frequency, column 2-n coherence");
readConfig(config, "inputfileInstrument", inputName, Config::MUSTSET, "", "");
readConfig(config, "inputfileInstrumentReference", inputNameReference, Config::MUSTSET, "", "");
if(isCreateSchema(config)) return;
// check input
// -----------
InstrumentFile instrumentFile(inputName);
InstrumentFile instrumentFileReference(inputNameReference);
InstrumentFile::checkArcCount({instrumentFile, instrumentFileReference});
// determine arc length and data fields
// ------------------------------------
Vector freqs;
UInt arcEpochCount, dataCount, arcCount;
Double sampling = 1.0;
if(Parallel::isMaster(comm))
{
arcCount = instrumentFile.arcCount();
std::vector<Time> times;
Time maxArcLen = seconds2time(0.0);
dataCount = 0;
for(UInt arcNo = 0; arcNo<arcCount; arcNo++)
{
Arc arc = instrumentFile.readArc(arcNo);
if(arc.size() == 0)
continue;
auto arcTimes = arc.times();
dataCount = std::max(dataCount, arc.at(0).data().rows());
maxArcLen = std::max(arcTimes.back() - arcTimes.front(), maxArcLen);
times.insert(times.end(), arcTimes.begin(), arcTimes.end());
}
sampling = medianSampling(times).seconds();
arcEpochCount = static_cast<UInt>(std::round(maxArcLen.seconds()/sampling)+1);
freqs = Fourier::frequencies(arcEpochCount, sampling);
logInfo<<" maximum arc length: "<<arcEpochCount<<" epochs"<<Log::endl;
logInfo<<" median sampling: "<<sampling<<" seconds"<<Log::endl;
}
Parallel::broadCast(freqs, 0, comm);
Parallel::broadCast(arcEpochCount, 0, comm);
Parallel::broadCast(dataCount, 0, comm);
Parallel::broadCast(arcCount, 0, comm);
Bool countEven = (arcEpochCount%2) == 0; // flag that determines how to handle the nyquist frequency, see fourier.h for details
// estimate the covariance matrix for each arc, then reduce
// --------------------------------------------------------
logStatus<<"Estimate spectral coherence for each arc"<<Log::endl;
Matrix Gxx(freqs.rows(), dataCount);
Matrix Gyy(freqs.rows(), dataCount);
Matrix GxyReal(freqs.rows(), dataCount);
Matrix GxyImag(freqs.rows(), dataCount);
Parallel::forEach(arcCount, [&](UInt arcNo)
{
Arc arc = instrumentFile.readArc(arcNo);
Arc arcRef = instrumentFileReference.readArc(arcNo);
Matrix X = arc.matrix();
Matrix Y = arcRef.matrix();
std::vector<std::vector<std::complex<Double>>> F = leastSquaresFourier(freqs, X, countEven);
std::vector<std::vector<std::complex<Double>>> G = leastSquaresFourier(freqs, Y, countEven);
// accumulate estimates
for(UInt k = 0; k<std::min(F.size(), G.size()); k++)
{
for(UInt n = 0; n<freqs.rows(); n++)
{
auto c = F.at(k).at(n)*std::conj(G.at(k).at(n)); // cross PSD
GxyReal(n, k) += c.real();
GxyImag(n, k) += c.imag();
Gxx(n, k) += std::abs(F.at(k).at(n)*std::conj(F.at(k).at(n))); // auto PSDs
Gyy(n, k) += std::abs(G.at(k).at(n)*std::conj(G.at(k).at(n)));
}
}
}, comm);
Parallel::reduceSum(GxyReal, 0, comm);
Parallel::reduceSum(GxyImag, 0, comm);
Parallel::reduceSum(Gxx, 0, comm);
Parallel::reduceSum(Gyy, 0, comm);
if(Parallel::isMaster(comm))
{
Matrix coherence(freqs.rows(), dataCount+1); // first row is frequency
copy(freqs, coherence.column(0));
for(UInt n = 0; n<freqs.rows(); n++)
for(UInt k=0; k<dataCount; k++)
coherence(n, k+1) = (GxyReal(n,k)*GxyReal(n,k) + GxyImag(n,k)*GxyImag(n,k))/(Gxx(n, k)*Gyy(n,k)); // C =|Gxy|^2/(Gxx*Gyy)
logStatus<<"write coherence to <"<<outputName<<">"<<Log::endl;
writeFileMatrix(outputName, coherence);
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Matrix Instrument2SpectralCoherence::designMatrix(const Vector &t, Double f, Bool isNyquist)
{
Matrix A;
if(isNyquist)
{
A = Matrix(t.rows(), 1);
for(UInt i = 0; i<A.rows(); i++)
A(i, 0) = (i%2) == 0 ? 1.0 : -1.0;
}
else
{
A = Matrix(t.rows(), 2);
for(UInt i = 0; i<A.rows(); i++)
{
A(i, 0) = std::sin(2*PI*f*t(i));
A(i, 1) = std::cos(2*PI*f*t(i));
}
}
return A;
}
/***********************************************/
std::vector<std::vector<std::complex<Double>>> Instrument2SpectralCoherence::leastSquaresFourier(const Vector &freqs, const_MatrixSliceRef arcMatrix, Bool countEven)
{
Vector t(arcMatrix.column(0));
t-=t(0);
t*=86400.0; // mjd -> seconds
std::vector< std::vector< std::complex<Double> > > F(arcMatrix.columns()-1);
for(UInt i = 0; i<F.size(); i++) // zero frequency: mean
F.at(i).push_back(std::complex<Double>(mean(arcMatrix.column(i+1)), 0.0));
UInt loopCount = countEven ? freqs.size()-2 : freqs.size()-1;
for(UInt k = 0; k<loopCount; k++)
{
Matrix A = designMatrix(t, freqs[k+1]);
Matrix l = Matrix(arcMatrix.column(1, arcMatrix.columns()-1));
Matrix x_hat = leastSquares(A, l);
for(UInt i = 0; i<arcMatrix.columns()-1; i++)
F.at(i).push_back(std::complex<Double>(0.5*x_hat(1, i), -0.5*x_hat(0, i)));
}
if(countEven) // special case nyquist frequency
{
Matrix A = designMatrix(t, 0.5, TRUE);
Matrix l = Matrix(arcMatrix.column(1, arcMatrix.columns()-1));
Matrix x_hat = leastSquares(A, l);
for(UInt i = 0; i<arcMatrix.columns()-1; i++)
F.at(i).push_back(std::complex<Double>(x_hat(0, i), 0.0));
}
return F;
}
/***********************************************/
|