File: instrumentAccelerometerEstimateBiasScale.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (266 lines) | stat: -rw-r--r-- 10,599 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/***********************************************/
/**
* @file instrumentAccelerometerEstimateBiasScale.cpp
*
* @brief Estimate accelerometer bias and scale.
*
* @author Beate Klinger
* @date 2014-11-27
*/
/***********************************************/

// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program calibrates \configFile{inputfileAccelerometer}{instrument} with respect to
simulated accelerometer data, see \program{SimulateAccelerometer}.
The parameters \configFile{outputfileSolution}{matrix}
of \configClass{parametrizationAcceleration}{parametrizationAccelerationType}
are estimated and the effect is reduced to calibrate the \file{accelerometer data}{instrument}.

If \configFile{inputfileThruster}{instrument} is given, the corresponding epochs
(within \config{marginThruster}) are not used for the parameter estimation,
but the accelerometer epochs are still calibrated afterwards.
An arbitrary instrument file is allowed here.

The \configFile{inputfileOrbit}{instrument}, \configFile{inputfileStarCamera}{instrument},
\configClass{earthRotation}{earthRotationType}, \configClass{ephemerides}{ephemeridesType},
and \configFile{satelliteModel}{satelliteModel} are only needed for some special parametrizations.
)";

/***********************************************/

#include "programs/program.h"
#include "files/fileMatrix.h"
#include "files/fileInstrument.h"
#include "files/fileSatelliteModel.h"
#include "classes/earthRotation/earthRotation.h"
#include "classes/ephemerides/ephemerides.h"
#include "classes/parametrizationAcceleration/parametrizationAcceleration.h"

/***** CLASS ***********************************/

/** @brief Estimate accelerometer bias and scale.
* @ingroup programsGroup */
class InstrumentAccelerometerEstimateBiasScale
{
  InstrumentFile                 accFile;
  InstrumentFile                 accFileSim;
  InstrumentFile                 thrusterFile;
  InstrumentFile                 orbitFile;
  InstrumentFile                 starCameraFile;
  Double                         margin;
  EarthRotationPtr               earthRotation;
  EphemeridesPtr                 ephemerides;
  ParametrizationAccelerationPtr parameterAcceleration;
  SatelliteModelPtr              satellite;

  void observationEquation(UInt arcNo, AccelerometerArc &acc, Vector &l, Matrix &A, Matrix &B);

public:
  void run(Config &config, Parallel::CommunicatorPtr comm);
};

GROOPS_REGISTER_PROGRAM(InstrumentAccelerometerEstimateBiasScale, PARALLEL, "estimate accelerometer bias and scale.", Instrument)

/***********************************************/

void InstrumentAccelerometerEstimateBiasScale::run(Config &config, Parallel::CommunicatorPtr comm)
{
  try
  {
    FileName accelerometerOutName, solutionOutName;
    FileName accelerometerInName,  accelerometerInNameSim;
    FileName thrusterInName;
    FileName orbitInName;
    FileName starCameraInName;
    FileName satelliteModelInName;

    renameDeprecatedConfig(config, "satelliteModel", "inputfileSatelliteModel",     date2time(2020, 8, 19));
    renameDeprecatedConfig(config, "parameter",      "parametrizationAcceleration", date2time(2020, 6,  3));

    readConfig(config, "outputfileAccelerometer",     accelerometerOutName,   Config::MUSTSET,  "",     "");
    readConfig(config, "outputfileSolution",          solutionOutName,        Config::OPTIONAL, "",     "");
    readConfig(config, "inputfileAccelerometer",      accelerometerInName,    Config::MUSTSET,  "",     "");
    readConfig(config, "inputfileAccelerometerSim",   accelerometerInNameSim, Config::MUSTSET,  "",     "");
    readConfig(config, "inputfileThruster",           thrusterInName,         Config::OPTIONAL, "",     "remove thruster events");
    readConfig(config, "marginThruster",              margin,                 Config::DEFAULT,  "1e-5", "margin size (on both sides) [seconds]");
    readConfig(config, "inputfileOrbit",              orbitInName,            Config::OPTIONAL, "",     "");
    readConfig(config, "inputfileStarCamera",         starCameraInName,       Config::OPTIONAL, "",     "");
    readConfig(config, "earthRotation",               earthRotation,          Config::OPTIONAL, "file", "");
    readConfig(config, "ephemerides",                 ephemerides,            Config::OPTIONAL, "jpl",  "may be needed by parametrizationAcceleration");
    readConfig(config, "inputfileSatelliteModel",     satelliteModelInName,   Config::OPTIONAL, "{groopsDataDir}/satelliteModel/", "satellite macro model");
    readConfig(config, "parametrizationAcceleration", parameterAcceleration,  Config::MUSTSET,  "",     "");
    if(isCreateSchema(config)) return;

     // ======================================================

    // init instrument files + satellite model
    // ---------------------------------------
    logStatus<<"read instrument data <"<<accelerometerInName<<">"<<Log::endl;
    logStatus<<"read simulated instrument data <"<<accelerometerInNameSim<<">"<<Log::endl;
    accFile.open(accelerometerInName);
    accFileSim.open(accelerometerInNameSim);
    orbitFile.open(orbitInName);
    starCameraFile.open(starCameraInName);
    thrusterFile.open(thrusterInName);
    InstrumentFile::checkArcCount({accFile, accFileSim, orbitFile, starCameraFile});

    if(!satelliteModelInName.empty())
      readFileSatelliteModel(satelliteModelInName, satellite);
    const UInt countParameter = parameterAcceleration->parameterCount();

     // ======================================================

    // estiamte accelerometer bias/scale
    // ---------------------------------
    Vector x;
    if(countParameter)
    {
      logStatus<<"estimate bias/scale"<<Log::endl;
      logInfo<<"  parameter count = "<<countParameter<<Log::endl;
      Matrix  N(countParameter, Matrix::SYMMETRIC);
      Vector  n(countParameter);
      Parallel::forEach(accFile.arcCount(), [&](UInt arcNo)
      {
        AccelerometerArc acc;
        Vector           l;
        Matrix           A, B;
        observationEquation(arcNo, acc, l, A, B);

        // remove thruster events (incl. margin)
        Arc thruster = thrusterFile.readArc(arcNo);
        if(thruster.size())
        {
          UInt idxThruster = 0;
          for(UInt i=0; i<acc.size(); i++)
          {
            while(idxThruster<thruster.size() && ((thruster.at(idxThruster).time-acc.at(i).time).seconds() < -margin))
              idxThruster++;
            if(idxThruster<thruster.size() && ((thruster.at(idxThruster).time-acc.at(i).time).seconds() > margin))
            {
              if(l.size()) l.row(3*i,3).setNull();
              if(A.size()) A.row(3*i,3).setNull();
              if(B.size()) B.row(3*i,3).setNull();
            }
          }
        }

        // accumulate normals
        // ------------------
        if(B.size())
          eliminationParameter(B, A, l);
        if(A.size())
        {
          rankKUpdate(1, A, N);
          matMult(1., A.trans(), l, n);
        }
      }, comm);
      Parallel::reduceSum(N, 0, comm);
      Parallel::reduceSum(n, 0, comm);

      if(Parallel::isMaster(comm))
      {
        // regularize not used parameters
        // ------------------------------
        for(UInt i=0; i<N.rows(); i++)
          if(N(i,i)==0)
            N(i,i) = 1.0;

        x = solve(N, n);

        if(!solutionOutName.empty())
        {
          logStatus<<"write solution to <"<<solutionOutName<<">"<<Log::endl;
          writeFileMatrix(solutionOutName, x);
        }
      } // if(Parallel::isMaster(comm))
      Parallel::broadCast(x, 0, comm);
    }

    // Apply estimated parameters
    // --------------------------
    std::vector<Arc> arcList(accFile.arcCount());
    Parallel::forEach(arcList, [&](UInt arcNo)
    {
      AccelerometerArc acc;
      Vector           l;
      Matrix           A, B;
      observationEquation(arcNo, acc, l, A, B);

      Vector Ax(l.rows());
      if(A.size())
        Ax = A*x;
      if(B.size())
        matMult(1, B, leastSquares(Matrix(B), l-Ax), Ax);

      for(UInt i=0; i<acc.size(); i++)
      {
        acc.at(i).acceleration.x() += Ax(3*i+0);
        acc.at(i).acceleration.y() += Ax(3*i+1);
        acc.at(i).acceleration.z() += Ax(3*i+2);
      }

      return acc;
    }, comm);

    if(Parallel::isMaster(comm))
    {
      logStatus<<"write calibrated accelerometer file <"<<accelerometerOutName<<">"<<Log::endl;
      InstrumentFile::write(accelerometerOutName, arcList);
    }
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

void InstrumentAccelerometerEstimateBiasScale::observationEquation(UInt arcNo, AccelerometerArc &acc, Vector &l, Matrix &A, Matrix &B)
{
  try
  {
    acc                         = accFile.readArc(arcNo);
    AccelerometerArc accSim     = accFileSim.readArc(arcNo);
    OrbitArc         orbit      = orbitFile.readArc(arcNo);
    StarCameraArc    starCamera = starCameraFile.readArc(arcNo);
    const UInt       epochCount = acc.size();
    Arc::checkSynchronized({acc, accSim, orbit, starCamera});

    parameterAcceleration->setIntervalArc(acc.at(0).time, acc.back().time+medianSampling(acc.times()));

    l = Vector(3*epochCount);
    A = Matrix(3*epochCount, parameterAcceleration->parameterCount());
    B = Matrix(3*epochCount, parameterAcceleration->parameterCountArc());

    for(UInt i=0; i<epochCount; i++)
    {
      l(3*i+0) = accSim.at(i).acceleration.x()-acc.at(i).acceleration.x();
      l(3*i+1) = accSim.at(i).acceleration.y()-acc.at(i).acceleration.y();
      l(3*i+2) = accSim.at(i).acceleration.z()-acc.at(i).acceleration.z();

      Rotary3d rotEarth, rotSat;
      Vector3d position, velocity;
      if(earthRotation)     rotEarth = earthRotation->rotaryMatrix(acc.at(i).time);
      if(starCamera.size()) rotSat   = starCamera.at(i).rotary;
      if(orbit.size())      position = orbit.at(i).position;
      if(orbit.size())      velocity = orbit.at(i).velocity;

      Matrix AEpoch(3, parameterAcceleration->parameterCount());
      Matrix BEpoch(3, parameterAcceleration->parameterCountArc());
      parameterAcceleration->compute(satellite, acc.at(i).time, position, velocity, rotSat, rotEarth, ephemerides, AEpoch, BEpoch);

      const Matrix R = (rotEarth*rotSat).matrix();  // rotate into accelerometer frame
      if(A.size()) matMult(1.0, R.trans(), AEpoch, A.row(3*i,3));
      if(B.size()) matMult(1.0, R.trans(), BEpoch, B.row(3*i,3));
    }
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/