File: instrumentStarCamera2AccAngularRate.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (123 lines) | stat: -rw-r--r-- 4,423 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
/***********************************************/
/**
* @file instrumentStarCamera2AccAngularRate.cpp
*
* @brief Derivation of angular rates from rotations.
*
* @author Torsten Mayer-Guerr
* @date 2011-04-18
*/
/***********************************************/

// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program derivate from a time series of quaternions
a series of angular rates and angular accelerations.
The derivatives are computed by a polynomial interpolation
with \config{interpolationDegree} of the quaternions.
)";

/***********************************************/

#include "programs/program.h"
#include "base/polynomial.h"
#include "files/fileInstrument.h"

/***** CLASS ***********************************/

/** @brief Derivation of angular rates from rotations.
* @ingroup programsGroup */
class InstrumentStarCamera2AccAngularRate
{
public:
  void run(Config &config, Parallel::CommunicatorPtr comm);
};

GROOPS_REGISTER_PROGRAM(InstrumentStarCamera2AccAngularRate, SINGLEPROCESS, "derivation of angular rates from rotations", Instrument)

/***********************************************/

void InstrumentStarCamera2AccAngularRate::run(Config &config, Parallel::CommunicatorPtr /*comm*/)
{
  try
  {
    FileName angRateName, angAccName;
    FileName starCameraName;
    UInt     derivationDegree;

    readConfig(config, "outputfileAngularRate", angRateName,      Config::OPTIONAL, "", "[rad/s], VECTOR3D");
    readConfig(config, "outputfileAngularAcc",  angAccName,       Config::OPTIONAL, "", "[rad/s**2], VECTOR3D");
    readConfig(config, "inputfileStarCamera",   starCameraName,   Config::MUSTSET,  "", "");
    readConfig(config, "interpolationDegree",   derivationDegree, Config::DEFAULT,  "2", "derivation by polynomial interpolation of degree n");
    if(isCreateSchema(config)) return;

    // init interpolation coefficients
    // -------------------------------

    // calculate angular rates & accelerations
    // ---------------------------------------
    logStatus<<"calculate angular rates & accelerations"<<Log::endl;
    InstrumentFile starCameraFile(starCameraName);
    std::list<Arc> angRateArcList, angAccArcList;
    Single::forEach(starCameraFile.arcCount(), [&](UInt arcNo)
    {
      const StarCameraArc scaArc = starCameraFile.readArc(arcNo);
      const std::vector<Time> times = scaArc.times();
      const Matrix q = scaArc.matrix().column(1,4);
      Polynomial polynomial(times, derivationDegree);

      // angular rate
      // ------------
      Matrix dq = polynomial.derivative(times, q);
      Vector3dArc angRateArc;
      for(UInt i=0; i<scaArc.size(); i++)
      {
        Vector3dEpoch angRate;
        angRate.time = scaArc.at(i).time;
        angRate.vector3d.x() = 2*(-q(i,1)*dq(i,0) + q(i,0)*dq(i,1) + q(i,3)*dq(i,2) - q(i,2)*dq(i,3));
        angRate.vector3d.y() = 2*(-q(i,2)*dq(i,0) - q(i,3)*dq(i,1) + q(i,0)*dq(i,2) + q(i,1)*dq(i,3));
        angRate.vector3d.z() = 2*(-q(i,3)*dq(i,0) + q(i,2)*dq(i,1) - q(i,1)*dq(i,2) + q(i,0)*dq(i,3));
        angRateArc.push_back(angRate);
      }
      angRateArcList.push_back(angRateArc);

      // angular accelerations
      // ---------------------
      if(!angAccName.empty())
      {
        Matrix ddq = polynomial.derivative2nd(times, q);
        Vector3dArc angAccArc;
        for(UInt i=0; i<scaArc.size(); i++)
        {
          Vector3dEpoch angAcc;
          angAcc.time = scaArc.at(i).time;
          angAcc.vector3d.x() = 2*(-q(i,1)*ddq(i,0) + q(i,0)*ddq(i,1) + q(i,3)*ddq(i,2) - q(i,2)*ddq(i,3));
          angAcc.vector3d.y() = 2*(-q(i,2)*ddq(i,0) - q(i,3)*ddq(i,1) + q(i,0)*ddq(i,2) + q(i,1)*ddq(i,3));
          angAcc.vector3d.z() = 2*(-q(i,3)*ddq(i,0) + q(i,2)*ddq(i,1) - q(i,1)*ddq(i,2) + q(i,0)*ddq(i,3));
          angAccArc.push_back(angAcc);
        }
        angAccArcList.push_back(angAccArc);
      }
    });

    // write data
    // ----------
    if(!angRateName.empty())
    {
      logStatus<<"write angular rate data to file <"<<angRateName<<">"<<Log::endl;
      InstrumentFile::write(angRateName, angRateArcList);
    }
    if(!angAccName.empty())
    {
      logStatus<<"write angular accelerations data to file <"<<angAccName<<">"<<Log::endl;
      InstrumentFile::write(angAccName, angAccArcList);
    }
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/