1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
/***********************************************/
/**
* @file kalmanBuildNormals.cpp
*
* @brief Accumulate normals for sub monthly data sets.
*
* @author Torsten Mayer-Guerr
* @author Andreas Kvas
* @date 2009-10-10
*/
/***********************************************/
// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program sets up normal equations based on \configClass{observation}{observationType}
for short-term gravity field variations.
It computes the normal equations based on the intervals $i \in \{1, ..., N\}$ given in the \configFile{arcList}{arcList}.
It sets up the least squares adjustment
\begin{equation}
\begin{bmatrix}
\mathbf{l}_1 \\
\mathbf{l}_2 \\
\vdots \\
\mathbf{l}_N \\
\end{bmatrix}
=
\begin{bmatrix}
\mathbf{A}_1 & & & \\
& \mathbf{A}_2 & &\\
& & \ddots & \\
& & & \mathbf{A}_N \\
\end{bmatrix}
\begin{bmatrix}
\mathbf{x}^{(1)} \\
\mathbf{x}^{(2)} \\
\vdots \\
\mathbf{x}^{(N)} \\
\end{bmatrix}
+
\begin{bmatrix}
\mathbf{e}_1 \\
\mathbf{e}_2 \\
\vdots \\
\mathbf{e}_N \\
\end{bmatrix},
\end{equation}
and subsequently computes the normal equations $\mathbf{N}_i, \mathbf{n}_i$ for each interval.
If \config{eliminateNonGravityParameters} is true, all non-gravity parameters are eliminated before the normals
are written to \configFile{outputfileNormalEquation}{normalEquation}.
For each time interval in \config{arcList} a single \file{normal equation file}{normalEquation} is written.
This program computes the input normals for \program{KalmanFilter} and \program{KalmanSmootherLeastSquares}.
)";
/***********************************************/
#include "programs/program.h"
#include "parser/dataVariables.h"
#include "files/fileArcList.h"
#include "files/fileNormalEquation.h"
#include "classes/observation/observation.h"
/***** CLASS ***********************************/
/** @brief Accumulate normals for sub monthly data sets.
* @ingroup programsGroup */
class KalmanBuildNormals
{
public:
void run(Config &config, Parallel::CommunicatorPtr comm);
private:
ObservationPtr observation;
std::vector<UInt> arcsInterval;
std::vector<Time> timesInterval;
// normal equation system (for each interval)
std::vector<UInt> obsCount;
std::vector<Matrix> N, n;
std::vector<Vector> lPl;
void computeArc(UInt arcNo);
};
GROOPS_REGISTER_PROGRAM(KalmanBuildNormals, PARALLEL, "accumulate normals for sub monthly data sets.", KalmanFilter, NormalEquation)
/***********************************************/
void KalmanBuildNormals::run(Config &config, Parallel::CommunicatorPtr comm)
{
try
{
FileName fileNameNormals;
FileName fileNameArcList;
Bool eliminatePararmeter;
renameDeprecatedConfig(config, "inputfileNormalequation", "inputfileNormalEquation", date2time(2020, 6, 3));
renameDeprecatedConfig(config, "arcList", "inputfileArcList", date2time(2020, 7, 7));
readConfig(config, "outputfileNormalEquation", fileNameNormals, Config::MUSTSET, "normals/normals_{loopTime:%D}.dat", "outputfile for normal equations");
readConfig(config, "observation", observation, Config::MUSTSET, "", "");
readConfig(config, "inputfileArcList", fileNameArcList, Config::MUSTSET, "", "list to correspond points of time to arc numbers");
readConfig(config, "eliminateNonGravityParameters", eliminatePararmeter, Config::DEFAULT, "1", "eliminate additional parameters from normals, 0: all parameter are saved");
if(isCreateSchema(config)) return;
// =======================
const UInt arcCount = observation->arcCount();
// read arc list
// -------------
logStatus<<"read arc list <"<<fileNameArcList<<">"<<Log::endl;
readFileArcList(fileNameArcList, arcsInterval, timesInterval);
if(arcsInterval.back()>arcCount)
throw(Exception("count of arcs differ in observation and arcList"));
VariableList fileNameVariableList;
addTimeVariables(fileNameVariableList);
// =======================
// setup observation equations
// ---------------------------
logStatus<<"set up observation equations"<<Log::endl;
// init normals
N.resize(arcsInterval.size()-1);
n.resize(arcsInterval.size()-1);
lPl.resize(arcsInterval.size()-1);
obsCount.resize(arcsInterval.size()-1, 0);
Parallel::forEachInterval(arcCount, arcsInterval, [this](UInt arcNo) {return computeArc(arcNo);}, comm);
// =======================
// collect system of normal equations
// ----------------------------------
if(Parallel::size(comm)>=3)
{
logStatus<<"collect system of normal equations"<<Log::endl;
for(UInt idxInterval=0; idxInterval<timesInterval.size()-1; idxInterval++)
{
UInt color = MAX_UINT;
if(N.at(idxInterval).size())
color = idxInterval;
Parallel::CommunicatorPtr commSplit= Parallel::splitCommunicator(color, Parallel::myRank(comm), comm);
if(commSplit && (Parallel::size(commSplit)>1))
{
Parallel::reduceSum(N.at(idxInterval), 0, commSplit);
Parallel::reduceSum(n.at(idxInterval), 0, commSplit);
Parallel::reduceSum(lPl.at(idxInterval), 0, commSplit);
Parallel::reduceSum(obsCount.at(idxInterval), 0, commSplit);
if(Parallel::myRank(commSplit) != 0)
{
N.at(idxInterval) = Matrix();
n.at(idxInterval) = Matrix();
lPl.at(idxInterval) = Vector();
obsCount.at(idxInterval) = 0;
}
}
} // for(idxInterval)
} // if(Parallel::size()>=3)
// =======================
logStatus<<"computing normals"<<Log::endl;
for(UInt idxInterval=0; idxInterval<timesInterval.size()-1; idxInterval++)
if(N.at(idxInterval).size())
{
NormalEquationInfo normalInfo;
observation->parameterName(normalInfo.parameterName);
// eliminate state parameters
if(eliminatePararmeter && (observation->parameterCount() > observation->gravityParameterCount()))
{
// regularize not used parameters
for(UInt i=observation->gravityParameterCount(); i<N.at(idxInterval).rows(); i++)
if(N.at(idxInterval)(i,i)==0)
{
N.at(idxInterval)(i,i) += 1.0;
obsCount.at(idxInterval) += 1;
}
Double regul = 1;
for(;;)
{
try
{
UInt startElim = observation->gravityParameterCount();
UInt countElim = observation->parameterCount() - observation->gravityParameterCount();
// solve for state parameters and update correlation block
Matrix N22 = N.at(idxInterval).slice(startElim, startElim, countElim, countElim);
cholesky(N22); // N22 = W^T*W
triangularSolve(1.0, N22.trans(), N.at(idxInterval).slice(0, startElim, startElim, countElim).trans()); //N12*W^-1
// update coefficient matrix
rankKUpdate(-1.0, N.at(idxInterval).slice(0, startElim, startElim, countElim).trans(),
N.at(idxInterval).slice(0, 0, startElim, startElim)); // N = N11 - N12 (W^T W)^-1 N12^T
// update right hand side
triangularSolve(1.0, N22.trans(), n.at(idxInterval).row(startElim, countElim)); // W^-T * n2
matMult(-1.0, N.at(idxInterval).slice(0, startElim, startElim, countElim),
n.at(idxInterval).row(startElim, countElim),
n.at(idxInterval).row(0, startElim)); // n = n1 - N12*W^-1 * W^-T*n2
// update normals
obsCount.at(idxInterval) -= countElim;
for(UInt i=0; i<lPl.at(idxInterval).rows(); i++)
lPl.at(idxInterval)(i) -= quadsum(n.at(idxInterval).slice(startElim, i, countElim, 1)); // lPl = lPl - n2^T N2^(-1) n2
N.at(idxInterval) = N.at(idxInterval).slice(0, 0, startElim, startElim);
n.at(idxInterval) = n.at(idxInterval).row(0, startElim);
break;
}
catch(std::exception &e)
{
logError<<"error at "<<timesInterval.at(idxInterval).dateStr()<<": "<<e.what()<<" continue..."<<Log::endl;
for(UInt i=observation->gravityParameterCount(); i<N.at(idxInterval).rows(); i++)
N.at(idxInterval)(i,i) += regul;
regul *= 10;
}
}
normalInfo.parameterName.resize(observation->gravityParameterCount());
}
// save normals
// ------------
normalInfo.lPl = lPl.at(idxInterval);
normalInfo.observationCount = obsCount.at(idxInterval);
evaluateTimeVariables(idxInterval, timesInterval.at(idxInterval), timesInterval.at(idxInterval+1), fileNameVariableList);
logStatus<<"write normal equations to <"<<fileNameNormals(fileNameVariableList)<<">"<<Log::endl;
writeFileNormalEquation(fileNameNormals(fileNameVariableList), normalInfo, N.at(idxInterval), n.at(idxInterval));
} // for(idxInterval)
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void KalmanBuildNormals::computeArc(UInt arcNo)
{
try
{
// observation equations
// ---------------------
Matrix l,A,B;
observation->observation(arcNo, l,A,B);
if(l.rows()==0)
return;
// if equations are orthogonaly transformed
// additional residuals are appended to l
// ----------------------------------------
Matrix l2;
if(l.rows()>A.rows())
{
l2 = l.row(A.rows(), l.rows()-A.rows());
l = l.row(0, A.rows());
}
// eliminate arc related parameters
// --------------------------------
if(B.size()!=0)
eliminationParameter(B,A,l);
// search time interval
// --------------------
UInt idxInterval = 0;
while(arcsInterval.at(idxInterval+1)<=arcNo)
idxInterval++;
// accumulate normal equation system
// ---------------------------------
obsCount.at(idxInterval) += l.rows() + l2.rows();
if(lPl.at(idxInterval).size() == 0)
lPl.at(idxInterval) = Vector(l.columns());
for(UInt i=0; i<l.columns(); i++)
lPl.at(idxInterval)(i) += quadsum(l.column(i)) + quadsum(l2.column(i));
// right hand side
if(n.at(idxInterval).size() == 0)
n.at(idxInterval) = Matrix(A.columns(), l.columns());
matMult(1., A.trans(), l, n.at(idxInterval));
// normal matrix
if(N.at(idxInterval).size() == 0)
N.at(idxInterval) = Matrix(A.columns(), Matrix::SYMMETRIC);
rankKUpdate(1., A, N.at(idxInterval));
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|