1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
/***********************************************/
/**
* @file potentialCoefficients2BlockMeanTimeSplines.cpp
*
* @brief Write monthly potential coeffcients into one time spline file.
*
* @author Torsten Mayer-Guerr
* @date 2008-08-08
*
*/
/***********************************************/
// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program is a simplified version of \program{Gravityfield2TimeSplines}.
It reads a series of potential coefficient files (\configFile{inputfilePotentialCoefficients}{potentialCoefficients})
and creates a time splines file with spline degree 0 (temporal block means) or degree 1 (linear splines).
The time intervals in which the potential coefficients are valid are defined between adjacent
points in time given by \config{splineTimeSeries}. Therefore one more point in time is needed
than the number of potential coefficient files for degree 0.
The coefficients can be filtered with \configClass{filter}{sphericalHarmonicsFilterType}.
If set the expansion is limited in the range between \config{minDegree} and \config{maxDegree} inclusivly.
The coefficients are related to the reference radius~\config{R} and the Earth gravitational constant \config{GM}.
This program is useful e.g. to combine monthly GRACE solutions to one file.
)";
/***********************************************/
#include "programs/program.h"
#include "base/sphericalHarmonics.h"
#include "files/fileSphericalHarmonics.h"
#include "files/fileTimeSplinesGravityfield.h"
#include "classes/timeSeries/timeSeries.h"
#include "classes/sphericalHarmonicsFilter/sphericalHarmonicsFilter.h"
/***** CLASS ***********************************/
/** @brief Write monthly potential coeffcients into one time spline file.
* @ingroup programsGroup */
class PotentialCoefficients2BlockMeanTimeSplines
{
public:
void run(Config &config, Parallel::CommunicatorPtr comm);
};
GROOPS_REGISTER_PROGRAM(PotentialCoefficients2BlockMeanTimeSplines, SINGLEPROCESS, "write monthly potential coeffcients into one time spline file", Misc, PotentialCoefficients, TimeSplines)
/***********************************************/
void PotentialCoefficients2BlockMeanTimeSplines::run(Config &config, Parallel::CommunicatorPtr /*comm*/)
{
try
{
FileName outputName, covName;
std::vector<FileName> inputName;
TimeSeriesPtr timeSeries;
SphericalHarmonicsFilterPtr filter;
UInt minDegree, maxDegree = INFINITYDEGREE;
Double GM, R;
Bool removeMean;
Bool interpolate;
UInt splineDegree;
readConfig(config, "outputfileTimeSplines", outputName, Config::MUSTSET, "", "");
readConfig(config, "outputfileTimeSplinesCovariance", covName, Config::OPTIONAL, "", "only the variances are saved");
readConfig(config, "inputfilePotentialCoefficients", inputName, Config::MUSTSET, "{groopsDataDir}/potential/", "");
readConfig(config, "filter", filter, Config::DEFAULT, "", "");
readConfig(config, "minDegree", minDegree, Config::DEFAULT, "0", "");
readConfig(config, "maxDegree", maxDegree, Config::OPTIONAL, "", "");
readConfig(config, "GM", GM, Config::DEFAULT, STRING_DEFAULT_GM, "Geocentric gravitational constant");
readConfig(config, "R", R, Config::DEFAULT, STRING_DEFAULT_R, "reference radius");
readConfig(config, "removeMean", removeMean, Config::DEFAULT, "0", "remove the temporal mean of the series before estimating the splines");
readConfig(config, "interpolate", interpolate, Config::DEFAULT, "0", "interpolate missing files");
readConfig(config, "splineTimeSeries", timeSeries, Config::MUSTSET, "", "input files must be between points in time");
readConfig(config, "splineDegree", splineDegree, Config::DEFAULT, "0", "degree of splines");
if(isCreateSchema(config)) return;
std::vector<Time> times = timeSeries->times();
const UInt timeCount = times.size();
const UInt fileCount = inputName.size();
if(timeCount-1+splineDegree != fileCount)
throw(Exception("fileCount("+fileCount%"%i) != timeCount("s+timeCount%"%i)-1+splineDegree"s));
// read data
// ---------
logStatus<<"read potential coefficients from files"<<Log::endl;
std::vector<Matrix> cnmList(fileCount), snmList(fileCount);
std::vector<Matrix> sigma2List(fileCount);
std::vector<Bool> isZero(fileCount, FALSE);
Single::forEach(fileCount, [&](UInt i)
{
SphericalHarmonics harm;
try
{
readFileSphericalHarmonics(inputName.at(i), harm);
harm = filter->filter(harm);
}
catch(std::exception &e)
{
logError<<e.what()<<": continue..."<<Log::endl;
harm = SphericalHarmonics();
isZero.at(i) = TRUE;
}
harm = harm.get(maxDegree, minDegree, GM, R);
maxDegree = harm.maxDegree();
GM = harm.GM();
R = harm.R();
cnmList.at(i) = harm.cnm();
snmList.at(i) = harm.snm();
sigma2List.at(i) = harm.sigma2x();
});
// interpolate missing data
// ------------------------
if(interpolate)
{
logStatus<<"interpolate missing data"<<Log::endl;
UInt idxStart = NULLINDEX;
for(UInt i=0; i<fileCount; i++)
{
if(!isZero.at(i))
idxStart = i;
else
{
UInt idxEnd = NULLINDEX;
for(UInt k=i+1; k<fileCount; k++)
if(!isZero.at(k))
{
idxEnd = k;
break;
}
if((idxStart==NULLINDEX)||(idxEnd==NULLINDEX))
throw(Exception("Cannot interpolate data at begin or end"));
Double tau = static_cast<Double>(i-idxStart)/(idxEnd-idxStart);
cnmList.at(i) = (1-tau) * cnmList.at(idxStart) + tau * cnmList.at(idxEnd);
snmList.at(i) = (1-tau) * snmList.at(idxStart) + tau * snmList.at(idxEnd);
sigma2List.at(i) = (1-tau) * sigma2List.at(idxStart) + tau * sigma2List.at(idxEnd);
}
}
}
// remove mean
// -----------
if(removeMean)
{
logStatus<<"remove mean"<<Log::endl;
UInt count = 0;
for(UInt i=0; i<fileCount; i++)
if(!isZero.at(i))
count++;
Matrix cnmMean = cnmList.at(0);
for(UInt i=1; i<fileCount; i++)
if(!isZero.at(i))
cnmMean += cnmList.at(i);
cnmMean *= 1./count;
for(UInt i=0; i<fileCount; i++)
if(interpolate || !isZero.at(i))
cnmList.at(i) -= cnmMean;
Matrix snmMean = snmList.at(0);
for(UInt i=1; i<fileCount; i++)
if(!isZero.at(i))
snmMean += snmList.at(i);
snmMean *= 1./count;
for(UInt i=0; i<fileCount; i++)
if(interpolate || !isZero.at(i))
snmList.at(i) -= snmMean;
}
// write timeSplines file
// ----------------------
if(!outputName.empty())
{
logStatus<<"write time splines to file <"<<outputName<<">"<<Log::endl;
writeFileTimeSplinesGravityfield(outputName, GM, R, splineDegree, times, cnmList, snmList);
}
if(!covName.empty())
{
logStatus<<"write covariance time splines to file <"<<covName<<">"<<Log::endl;
writeFileTimeSplinesCovariance(covName, GM, R, minDegree, maxDegree, splineDegree, times, sigma2List);
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|