1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
/***********************************************/
/**
* @file radialBasisSplines2KernelCoefficients.cpp
*
* @brief Kernel/Covariance-function from gravity field accuracies, if not given from signal (cnm,snm), if not given from kaulas rule.
*
* @author Torsten Mayer-Guerr
* @date 2008-08-08
*
*/
/***********************************************/
// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program calculates the coefficients $k_n$ of a \configClass{kernel:coefficients}{kernelType:coefficients} according to
\begin{equation}
k_n = \frac{GM}{4\pi R}\frac{\sigma_n}{\sqrt{2n+1}}.
\end{equation}
from a given \configClass{gravityfield}{gravityfieldType},
with \config{R} and \config{GM} describing the reference radius and the geocentric constant, respectively.
The $\sigma_n$
stand for the gravity field accuracies (from degree \config{minDegree} to \config{maxDegree}), if they are given.
If no accuracies are provided, the $\sigma_n$
represent the square root of the degree variances of the gravity field.
If \config{maxDegree} exceeds the maximum degree given by \configClass{gravityfield}{gravityfieldType},
the higher degrees are complemented by Kaula's rule
The output of the coefficients is given in the file \configFile{outputfileCoefficients}{matrix}.
)";
/***********************************************/
#include "base/import.h"
#include "files/fileMatrix.h"
#include "classes/gravityfield/gravityfield.h"
#include "programs/program.h"
/***** CLASS ***********************************/
/** @brief Kernel/Covariance-function from gravity field accuracies, if not given from signal (cnm,snm), if not given from kaulas rule.
* @ingroup programsGroup */
class RadialBasisSplines2KernelCoefficients
{
public:
void run(Config &config, Parallel::CommunicatorPtr comm);
};
GROOPS_REGISTER_PROGRAM(RadialBasisSplines2KernelCoefficients, SINGLEPROCESS, "Kernel/Covariance-function from gravity field accuracies, if not given from signal (cnm,snm), if not given from kaulas rule", Misc)
GROOPS_RENAMED_PROGRAM(KernelDegreeVariances, RadialBasisSplines2KernelCoefficients, date2time(2020, 11, 9))
/***********************************************/
void RadialBasisSplines2KernelCoefficients::run(Config &config, Parallel::CommunicatorPtr /*comm*/)
{
try
{
FileName fileNameCoeff;
GravityfieldPtr gravityfield;
UInt minDegree, maxDegree = INFINITYDEGREE;
Double GM, R;
Double kaulaPower, kaulaFactor;
readConfig(config, "outputfileCoefficients", fileNameCoeff, Config::MUSTSET, "", "");
readConfig(config, "gravityfield", gravityfield, Config::OPTIONAL, "", "use sigmas, if not given use signal (cnm,snm), if not given use kaulas rule");
readConfig(config, "minDegree", minDegree, Config::MUSTSET, "2", "");
readConfig(config, "maxDegree", maxDegree, Config::OPTIONAL, "", "");
readConfig(config, "GM", GM, Config::DEFAULT, STRING_DEFAULT_GM, "Geocentric gravitational constant");
readConfig(config, "R", R, Config::DEFAULT, STRING_DEFAULT_R, "reference radius");
readConfig(config, "kaulaPower", kaulaPower, Config::DEFAULT, "2", "sigma = kaulaFactor/degree^kaulaPower");
readConfig(config, "kaulaFactor", kaulaFactor, Config::DEFAULT, "1e-5", "sigma = kaulaFactor/degree^kaulaPower");
if(isCreateSchema(config)) return;
logStatus<<"use accuracies, if not given use signal, if not given use kaulas rule"<<Log::endl;
Vector coeff;
if(gravityfield)
{
// Use variances
SphericalHarmonics field = gravityfield->sphericalHarmonics(Time(), maxDegree, minDegree, GM, R);
maxDegree = field.maxDegree();
coeff = Vector(maxDegree+1);
for(UInt n=minDegree; n<=maxDegree; n++)
{
Double sum = 0.;
if(field.sigma2cnm().size())
for(UInt m=0; m<=n; m++)
sum += field.sigma2cnm()(n,m) + field.sigma2snm()(n,m);
// If no variances, use signal instead
if(sum==0)
for(UInt m=0; m<=n; m++)
sum += std::pow(field.cnm()(n,m), 2) + std::pow(field.snm()(n,m), 2);
coeff(n) = GM/R * std::sqrt(sum/(4*PI)/(2.*n+1.));
}
}
if(coeff.rows() == 0)
{
if(maxDegree == INFINITYDEGREE)
throw(Exception("maxDegree or gravityfield must be given"));
coeff = Vector(maxDegree+1);
}
// Fill the rest with kaula
for(UInt n=maxDegree+1; n-->minDegree;)
{
if(coeff(n)!=0)
break;
const Double sum = (2*n+1) * std::pow(kaulaFactor/std::pow(n, kaulaPower), 2);
coeff(n) = GM/R * std::sqrt(sum/(4*PI)/(2.*n+1.));
}
logStatus<<"write coefficient vector to file <"<<fileNameCoeff<<">"<<Log::endl;
writeFileMatrix(fileNameCoeff, coeff);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|