1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
/***********************************************/
/**
* @file normalsBuildShortTimeStaticLongTime.cpp
*
* @brief Normal equations with static, short time, and long time gravity field parameters.
*
* @author Torsten Mayer-Guerr
* @date 2012-08-13
*/
/***********************************************/
// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program sets up normal equations based on \configClass{observation}{observationType}.
Additionally short time and long time variations can be parametrized based on the static parameters
in \configClass{observation}{observationType} in an efficient way. The observation equations
are divided into time intervals $i \in \{1, ..., N\}$ (e.g. daily) as defined in
\configFile{inputfileArcList}{arcList}.
With \config{estimateLongTimeVariations} additional temporal variations can be co-estimated
for a subset of the parameters selected by \configClass{parameterSelection}{parameterSelectorType}.
These parameters might be spherical harmonic coefficients with a limited maximum degree.
The temporal variations are represented by base functions $\Phi_k(t_i)$ (e.g. trend and annual oscillation)
given by \configClass{parametrizationTemporal}{parametrizationTemporalType}.
The temporal base functions are evaluated at the mid time~$t_i$ of each interval~$i$, multiplicated
with the design matrix $\M A_i$ of the selected parameters, and the design matrix is extended
accordingly.
\fig{!hb}{0.8}{normalsBuildShortTimeStaticLongTime}{fig:normalsBuildShortTimeStaticLongTime}{Schema of the extended design matrix.}
With \config{estimateShortTimeVariations} short time variations of the gravity field can be co-estimated.
Their purpose is to mitigate temporal aliasing.
The short time parameters selected by \configClass{parameterSelection}{parameterSelectorType}
(e.g. daily constant or linear splines every 6 hour) are constrained by an
\configClass{autoregressiveModelSequence}{autoregressiveModelSequenceType}. If only a static parameter
set is selected the coressponding part of the design matrix is copied and modeled as a constant value
per interval in \configFile{inputfileArcList}{arcList} additionally so the corresponding temporal factor can be expressed as
\begin{equation}
\Phi_i(t) =
\begin{cases}
1 &\text{if} \hspace{5pt} t \in [t_i, t_{i+1}) \\
0 & \text{otherwise}
\end{cases}.
\end{equation}
Before writing the normal equations to \configFile{outputfileNormalEquation}{normalEquation}
short time gravity and satellite specific parameters can be eliminated with \config{eliminateParameter}.
Example: For the computation of the mean gravity field ITSG-Grace2018s with additional trend and annual signal
the normal equations are computed month by month and accumulated afterwards (see \program{NormalsAccumulate}).
The observations were divided into daily intervals with \configFile{inputfileArcList}{arcList}.
The static gravity field has been parametrized as spherical harmonics
up to degree $n=200$ in \configClass{observation:parametrizationGravity}{parametrizationGravityType}.
The trend and annual signals defined by
\configClass{estimateLongTimeVariations:parametrizationTemporal}{parametrizationTemporalType}
were estimated for selected parameters up to degree $n=120$.
To mitigate temporal aliasing daily gravity fields up to degree $n=40$ were setup and constrained
with an \configClass{autoregressiveModelSequence}{autoregressiveModelSequenceType} up to order three.
A detailed description of the approach is given in:
Kvas, A., Mayer-Gürr, T. GRACE gravity field recovery with background model uncertainties.
J Geod 93, 2543–2552 (2019). \url{https://doi.org/10.1007/s00190-019-01314-1}.
)";
/***********************************************/
#include "programs/program.h"
#include "files/fileArcList.h"
#include "files/fileNormalEquation.h"
#include "classes/observation/observation.h"
#include "classes/parameterSelector/parameterSelector.h"
#include "classes/parametrizationTemporal/parametrizationTemporal.h"
#include "misc/kalmanProcessing.h"
#include "misc/normalsShortTimeStaticLongTime.h"
/***** CLASS ***********************************/
/** @brief Normal equations with static, short time, and long time gravity field parameters.
* @ingroup programsGroup */
class NormalsBuildShortTimeStaticLongTime
{
public:
void run(Config &config, Parallel::CommunicatorPtr comm);
};
GROOPS_REGISTER_PROGRAM(NormalsBuildShortTimeStaticLongTime, PARALLEL, "Normal equations with static, short time, and long time gravity field parameters", NormalEquation)
GROOPS_RENAMED_PROGRAM(KalmanStaticTemporalNormals, NormalsBuildShortTimeStaticLongTime, date2time(2020, 12, 7))
/***********************************************/
void NormalsBuildShortTimeStaticLongTime::run(Config &config, Parallel::CommunicatorPtr comm)
{
try
{
FileName fileNameNormals;
ObservationPtr observation;
AutoregressiveModelSequencePtr arSequence;
ParameterSelectorPtr parameterShortTime;
ParametrizationTemporalPtr temporalLongTime;
ParameterSelectorPtr parameterLongTime;
FileName fileNameArcList;
UInt defaultBlockSize;
Bool eliminateParameter;
renameDeprecatedConfig(config, "outputfileNormalequation", "outputfileNormalEquation", date2time(2020, 6, 3));
renameDeprecatedConfig(config, "arcList", "inputfileArcList", date2time(2020, 7, 7));
readConfig(config, "outputfileNormalEquation", fileNameNormals, Config::MUSTSET, "", "outputfile for normal equations");
readConfig(config, "observation", observation, Config::MUSTSET, "", "");
if(readConfigSequence(config, "estimateShortTimeVariations", Config::OPTIONAL, "", "co-estimate short time gravity field variations"))
{
readConfig(config, "autoregressiveModelSequence", arSequence, Config::MUSTSET, "", "AR model sequence for constraining short time gravity variations");
readConfig(config, "parameterSelection", parameterShortTime, Config::MUSTSET, "", "parameters describing the short time gravity field");
endSequence(config);
}
if(readConfigSequence(config, "estimateLongTimeVariations", Config::OPTIONAL, "", "co-estimate long time gravity field variations"))
{
readConfig(config, "parametrizationTemporal", temporalLongTime, Config::MUSTSET, "", "parametrization of time variations (trend, annual, ...)");
readConfig(config, "parameterSelection", parameterLongTime, Config::MUSTSET, "", "parameters describing the long time gravity field");
endSequence(config);
}
readConfig(config, "inputfileArcList", fileNameArcList, Config::MUSTSET, "", "list to correspond points of time to arc numbers");
readConfig(config, "defaultBlockSize", defaultBlockSize, Config::DEFAULT, "2048", "block size for distributing the normal equations, 0: one block");
readConfig(config, "eliminateParameter", eliminateParameter, Config::DEFAULT, "1", "eliminate short time and state parameter");
if(isCreateSchema(config)) return;
// =======================
logStatus<<"read arc list <"<<fileNameArcList<<">"<<Log::endl;
std::vector<UInt> arcsInterval;
std::vector<Time> timesInterval;
readFileArcList(fileNameArcList, arcsInterval, timesInterval);
// init normal equations
// ---------------------
logStatus<<"initialize normal equations"<<Log::endl;
NormalsShortTimeStaticLongTime normals;
normals.init(observation, timesInterval, defaultBlockSize, comm, TRUE/*sortStateBeforeGravityParameter*/,
(arSequence) ? arSequence->dimension() : 0, parameterShortTime,
temporalLongTime, parameterLongTime);
normals.setBlocks(arcsInterval);
// setup observation equations
// ---------------------------
logStatus<<"accumulate normals from observation equations"<<Log::endl;
Parallel::forEachInterval(observation->arcCount(), arcsInterval, [&](UInt arcNo)
{
// search time interval
UInt idInterval = 0;
while(arcsInterval.at(idInterval+1) <= arcNo)
idInterval++;
observation->setInterval(timesInterval.at(idInterval), timesInterval.at(idInterval+1));
// observation equations
Matrix l, A, B;
observation->observation(arcNo, l, A, B);
if(l.rows() == 0)
return;
normals.accumulate(idInterval, l, A, B);
}, comm);
observation = nullptr;
// collect system of normal equations
// ----------------------------------
logStatus<<"collect system of normal equations"<<Log::endl;
normals.reduceSum();
// add normals of short time model
// -------------------------------
if(arSequence)
{
logStatus<<"add normals of short time model"<<Log::endl;
normals.addShortTimeNormals(1., arSequence->normalEquationSequence());
}
// eliminate interval & state parameters
// -------------------------------------
if(eliminateParameter)
{
logStatus<<"eliminate interval parameters from normal equations"<<Log::endl;
normals.regularizeUnusedParameters(normals.blockIndexStatic);
normals.cholesky(TRUE/*timing*/, 0, normals.blockIndexStatic, TRUE/*collect*/);
normals.triangularTransSolve(normals.n, 0, normals.blockIndexStatic);
if(Parallel::isMaster(comm))
{
normals.obsCount -= normals.blockIndex(normals.blockIndexStatic);
// lPl = lPl - n2^T N2^(-1) n2
for(UInt i=0; i<normals.lPl.rows(); i++)
normals.lPl(i) -= quadsum(normals.n.slice(0, i, normals.blockIndex(normals.blockIndexStatic),1));
// remove additional parameters
normals.n = normals.n.row(normals.blockIndex(normals.blockIndexStatic), normals.parameterCount() - normals.blockIndex(normals.blockIndexStatic));
normals.parameterNames.erase(normals.parameterNames.begin(), normals.parameterNames.begin()+normals.blockIndex(normals.blockIndexStatic));
}
normals.eraseBlocks(0, normals.blockIndexStatic);
} // if(eliminateParameter)
// Write normal equations
// ----------------------
logStatus<<"write normal equations to <"<<fileNameNormals<<">"<<Log::endl;
writeFileNormalEquation(fileNameNormals, NormalEquationInfo(normals.parameterNames, normals.lPl, normals.obsCount), normals, normals.n);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|