File: normalsSolverVCE.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (186 lines) | stat: -rw-r--r-- 7,945 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/***********************************************/
/**
* @file normalsSolverVCE.cpp
*
* @brief solve normal equations.
* Using cholesky decomposition.
* Relative weighting of different normal equations by variance component estimation (VCE).
*
* @author Torsten Mayer-Guerr
* @date 2003-03-26
*
*/
/***********************************************/

// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program accumulates \configClass{normalEquation}{normalEquationType}
and solves the total combined system.
The relative weigthing between the individual normals is determined iteratively
by means of variance component estimation (VCE). For a detailed description
of the used algorithm see \configClass{normalEquation}{normalEquationType}.

Besides the estimated parameter vector (\configFile{outputfileSolution}{matrix}) the
estimated accuracies (\configFile{outputfileSigmax}{matrix}) and the full covariance matrix
(\configFile{outputfileCovariance}{matrix}) can be saved. Also the combined normal system
can be written to \configFile{outputfileNormalEquation}{normalEquation}.

The \configFile{outputfileContribution}{matrix} is a matrix with rows for each estimated
parameter and columns for each \configClass{normalEquation}{normalEquationType}
and indicates the contribution of the individual normals to the estimated parameters.
Each row sum up to one.

See also \program{NormalsBuild}.
)";

/***********************************************/

#include "programs/program.h"
#include "files/fileMatrix.h"
#include "classes/normalEquation/normalEquation.h"

/***** CLASS ***********************************/

/** @brief Solve normal equations.
* Using cholesky decomposition.
* relative weighting of different normal equations by variance component estimation (VCE).
* @ingroup programsGroup */
class NormalsSolverVCE
{
public:
  void run(Config &config, Parallel::CommunicatorPtr comm);
};

GROOPS_REGISTER_PROGRAM(NormalsSolverVCE, PARALLEL, "solve normal equations (relative weighting by variance component estimation (VCE))", NormalEquation)

/***********************************************/

void NormalsSolverVCE::run(Config &config, Parallel::CommunicatorPtr comm)
{
  try
  {
    FileName          fileNameSolution, fileNameSigmax;
    FileName          fileNameCovariance, fileNameNormals, fileNameContribution, fileNameVarianceFactors;
    NormalEquationPtr normals;
    FileName          fileNameX0;
    UInt              rhsNo;
    UInt              maxIter;
    UInt              blockSize;

    renameDeprecatedConfig(config, "outputfileNormalequation", "outputfileNormalEquation", date2time(2020, 6, 3));
    renameDeprecatedConfig(config, "normalequation",           "normalEquation",           date2time(2020, 6, 3));

    readConfig(config, "outputfileSolution",        fileNameSolution,        Config::OPTIONAL, "",     "parameter vector");
    readConfig(config, "outputfileSigmax",          fileNameSigmax,          Config::OPTIONAL, "",     "standard deviations of the parameters (sqrt of the diagonal of the inverse normal equation)");
    readConfig(config, "outputfileCovariance",      fileNameCovariance,      Config::OPTIONAL, "",     "full covariance matrix");
    readConfig(config, "outputfileContribution",    fileNameContribution,    Config::OPTIONAL, "",     "contribution of normal system components to the solution vector");
    readConfig(config, "outputfileVarianceFactors", fileNameVarianceFactors, Config::OPTIONAL, "",     "estimated variance factors as vector");
    readConfig(config, "outputfileNormalEquation",  fileNameNormals,         Config::OPTIONAL, "",     "the combined normal equation system");
    readConfig(config, "normalEquation",            normals,                 Config::MUSTSET,  "",     "");
    readConfig(config, "inputfileApproxSolution",   fileNameX0,              Config::OPTIONAL, "",     "to accelerate convergence");
    readConfig(config, "rightHandSideNumberVCE",    rhsNo,                   Config::DEFAULT,  "0",    "the right hand side number for estimation of variance factors");
    readConfig(config, "normalsBlockSize",          blockSize,               Config::DEFAULT,  "2048", "block size for distributing the normal equations, 0: one block");
    readConfig(config, "maxIterationCount",         maxIter,                 Config::DEFAULT,  "20",   "maximum number of iterations for variance component estimation");
    if(isCreateSchema(config)) return;

    logStatus<<"init normal equations"<<Log::endl;
    normals->init(blockSize, comm);
    logInfo<<"  number of unknown parameters: "<<normals->parameterCount()<<Log::endl;
    logInfo<<"  number of right hand sides:   "<<normals->rightHandSideCount()<<Log::endl;

    // set approximate solution
    // ------------------------
    if(!fileNameX0.empty())
    {
      logStatus<<"read approximate solution <"<<fileNameX0<<">"<<Log::endl;
      Matrix x0;
      readFileMatrix(fileNameX0, x0);
      normals->setApproximateSolution(x0);
    }

    // Iteration
    // ---------
    Bool ready = FALSE;
    if(maxIter<1) maxIter = 1; // at least one step
    for(UInt iter=0; (iter<maxIter)&&(!ready); iter++)
    {
      logStatus<<iter+1<<". iteration step"<<Log::endl;

      logStatus<<"accumulate normal equations"<<Log::endl;
      ready = normals->build(rhsNo);
      logInfo<<"  observation count = "<<normals->observationCount()<<Log::endl;

      if(!fileNameNormals.empty())
      {
        logStatus<<"write normal equations to file <"<<fileNameNormals<<">"<<Log::endl;
        normals->write(fileNameNormals);
      }

      Vector sigmas = normals->varianceComponentFactors();
      if(Parallel::isMaster(comm))
      {
        for (UInt i=0; i<sigmas.rows(); i++)
          sigmas(i) = std::sqrt(sigmas(i));
        constexpr UInt maxCount = 20;
        logInfo<<"  applied variance factors"<<Log::endl;
        for(UInt i=0; i<std::min(maxCount-2, sigmas.rows()); i++)
          logInfo<<"    "<<i+1<<": sigma = "<<sigmas(i)<<Log::endl;
        if(sigmas.rows()>maxCount)
          logInfo<<"    "<<maxCount-1<<": sigma = ..."<<Log::endl;
        if(sigmas.rows()>=maxCount-2)
        {
          logInfo<<"    "<<sigmas.rows()-1<<": sigma = "<<sigmas(sigmas.rows()-2)<<Log::endl;
          logInfo<<"    "<<sigmas.rows()  <<": sigma = "<<sigmas(sigmas.rows()-1)<<Log::endl;
        }

        if(!fileNameVarianceFactors.empty())
        {
          logStatus<<"write variance factors to <"<<fileNameVarianceFactors<<">"<<Log::endl;
          writeFileMatrix(fileNameVarianceFactors, sigmas);
        }
      }

      logStatus<<"solve normal equations"<<Log::endl;
      Matrix x = normals->solve();
      logInfo<<"  sigma (total) = "<<normals->aposterioriSigma()<<Log::endl;

      if(Parallel::isMaster(comm) && !fileNameSolution.empty())
      {
        logStatus<<"write solution to <"<<fileNameSolution<<">"<<Log::endl;
        writeFileMatrix(fileNameSolution, x);
      }
    } // for(iter)

    // Inverse
    if(!fileNameSigmax.empty())
    {
      logStatus<<"inverte cholesky matrix and write standard deviations to <"<<fileNameSigmax<<">"<<Log::endl;
      Vector sigmax = normals->sigmaParameter();
      if(Parallel::isMaster(comm))
        writeFileMatrix(fileNameSigmax, sigmax);
    }

    // Covariance matrix
    if(!fileNameCovariance.empty())
    {
      logStatus<<"compute covariance matrix and write to <"<<fileNameCovariance<<">"<<Log::endl;
      normals->writeCovariance(fileNameCovariance);
    }

    // contributions
    if(!fileNameContribution.empty())
    {
      logStatus<<"compute contributions and write to <"<<fileNameContribution<<">"<<Log::endl;
      Matrix contrib = normals->contribution();
      if(Parallel::isMaster(comm))
        writeFileMatrix(fileNameContribution, contrib);
    }
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/