File: preprocessingSst.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (880 lines) | stat: -rw-r--r-- 39,640 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
/***********************************************/
/**
* @file preprocessingSst.cpp
*
* @brief Estimate covariance function / arc weights.
*
* @author Torsten Mayer-Guerr
* @author Matthias Ellmer
* @author Andreas Kvas
* @date 2011-09-23
*
*/
/***********************************************/

// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program processes satellite-to-satellite-tracking (SST) and kinematic orbit observations in a GRACE like configuration.
Three different observation groups are considered separately: SST and POD1/POD2 for the two satellites.
This program works similar to \program{PreprocessingPod}, see there for details. Here only deviations
in the settings are explained.

Precise orbit data (POD) often contains systematic errors in addition to stochastic noise. In this case the
variance component estimation fails and assigns too much weight to the POD data. Therefore an additional
\config{downweightPod} factor can be applied to the standard deviation of POD for the next least squares adjustment
in the iteration. This factor should also applied as \config{sigma} in \configClass{observation}{observationType}
for computation of the final solution e.g. with \program{NormalsSolverVCE}.

Short time variations of the gravity field can be co-estimated together with the static/monthly
mean gravity field. The short time parameters must also be set in \configClass{observation:parametrizationGravity}{parametrizationGravityType} and
can then be selected by \configClass{estimateShortTimeVariations:parameterSelection}{parameterSelectorType}.
If these parameters are not time variable, for example when a range of static parameters is selected,
they are set up as constant for each time interval defined in \config{inputfileArcList}. The parameters are constrained by an
\configClass{estimateShortTimeVariations:autoregressiveModelSequence}{autoregressiveModelSequenceType}. The weight of
the constrain equations in terms of the standard deviation can be estimated by means of
Variance Component Estimation (VCE) if \config{estimateShortTimeVariations:estimateSigma} is set.
The mathematical background of this co-estimation can be found in:

Kvas, A., Mayer-Gürr, T. GRACE gravity field recovery with background model uncertainties.
J Geod 93, 2543–2552 (2019). \url{https://doi.org/10.1007/s00190-019-01314-1}.
)";

/***********************************************/

#include "programs/program.h"
#include "files/fileArcList.h"
#include "files/fileMatrix.h"
#include "files/fileInstrument.h"
#include "files/fileParameterName.h"
#include "classes/parameterSelector/parameterSelector.h"
#include "misc/observation/observationMiscSst.h"
#include "misc/varianceComponentEstimation.h"
#include "misc/kalmanProcessing.h"
#include "misc/normalsShortTimeStaticLongTime.h"

/***** CLASS ***********************************/

/** @brief Estimate covariance function / arc weights.
* @ingroup programsGroup */
class PreprocessingSst
{
public:
  void run(Config &config, Parallel::CommunicatorPtr comm);

private:
  ObservationMiscSstPtr                observationMisc;
  std::vector<ObservationMiscSst::Arc> observationArc;
  InstrumentFile                       fileCovEpochPod1, fileCovEpochPod2;
  std::vector<UInt>                    arcsInterval;
  std::vector<Time>                    timesInterval;

  static constexpr UInt TYPESIZE = 3;
  enum Type : UInt {SST, POD1, POD2};
  std::array<std::string, TYPESIZE> typeName; // = {"SST", "POD1", "POD2"};

  Bool estimateCovarianceFunctionVCE;
  Bool estimateSigmasCovSst;
  Bool estimateArcSigmas;
  Bool estimateEpochSigmas;
  Bool estimateResiduals;
  Bool estimateSigmaShortTimeModel;

  // normal equations
  // ----------------
  NormalsShortTimeStaticLongTime normals;
  Matrix x;  // solution
  Matrix Wz; // monte carlo vector for redundancy computation

  // covariance
  std::array<UInt,   TYPESIZE> covColumns;
  std::array<Vector, TYPESIZE> sigma, sigmaNew;
  std::array<Matrix, TYPESIZE> covFunc, Psd, ePe, redundancy, CosTransform;
  std::array<Double, TYPESIZE> sampling;
  std::array<std::vector<ObservationSigmaArc>, TYPESIZE> arcListEpochSigma;

  std::vector<std::vector<Matrix>> CovSst; // Several independant matrices per arc
  Vector  sigmasCovSst, ePeCovSst, redundancyCovSst;

  // residuals
  std::array<std::vector<Arc>, TYPESIZE> arcListResiduals;

  UInt findInterval(UInt arcNo) const;
  void decorrelate(UInt arcNo, const std::array<UInt, TYPESIZE> &count, std::array<Matrix, TYPESIZE> &W, const std::list<MatrixSlice> &A);
  void buildNormals(UInt arcNo);
  void computeRedundancies(UInt arcNo);
  void computeResiduals(UInt arcNo);
  void computeEpochSigmas(UInt arcNo);
};

GROOPS_REGISTER_PROGRAM(PreprocessingSst, PARALLEL, "Estimate covariance function / arc weights.", Preprocessing, Covariance, Residuals, KalmanFilter)

/***********************************************/
/***********************************************/

void PreprocessingSst::run(Config &config, Parallel::CommunicatorPtr comm)
{
  try
  {
    typeName   = {"SST", "POD1", "POD2"};
    covColumns = {1, 3, 3};
    estimateCovarianceFunctionVCE = estimateArcSigmas = estimateEpochSigmas = estimateResiduals = FALSE;
    estimateSigmaShortTimeModel = FALSE;
    estimateSigmasCovSst = FALSE;

    FileName                       fileNameSolution, fileNameSigmax, fileNameParaName;
    std::array<FileName, TYPESIZE> fileNameOutArcSigma, fileNameOutEpochSigma, fileNameOutCovFunc, fileNameResiduals;
    std::array<FileName, TYPESIZE> fileNameInArcSigma, fileNameInEpochSigma, fileNameInCovFunc;
    FileName                       fileNameOutSigmasCovSst, fileNameInSigmasCovSst;
    FileName                       fileNameInCovEpochPod1,  fileNameInCovEpochPod2;
    std::vector<FileName>          fileNamesCovSst;
    std::array<Double, TYPESIZE>   sigma0; sigma0.fill(1.0);
    AutoregressiveModelSequencePtr arSequence;
    ParameterSelectorPtr           parameterShortTime;
    Double                         downweightPod;
    FileName                       fileNameArcList;
    UInt                           iterCount;
    std::string                    iterVariableName;
    UInt                           defaultBlockSize;

    readConfig(config, "outputfileSolution",      fileNameSolution, Config::OPTIONAL, "", "estimated parameter vector (static part only)");
    readConfig(config, "outputfileSigmax",        fileNameSigmax,   Config::OPTIONAL, "", "standard deviations of the parameters (sqrt of the diagonal of the inverse normal equation)");
    readConfig(config, "outputfileParameterName", fileNameParaName, Config::OPTIONAL, "", "estimated signal parameters (index is appended)");
    if(readConfigSequence(config, "estimateArcSigmas", Config::OPTIONAL, "", ""))
    {
      estimateArcSigmas = TRUE;
      readConfig(config, "outputfileSigmasPerArcSst",  fileNameOutArcSigma.at(SST),  Config::OPTIONAL, "", "accuracies of each arc (SST)");
      readConfig(config, "outputfileSigmasPerArcPod1", fileNameOutArcSigma.at(POD1), Config::OPTIONAL, "", "accuracies of each arc (POD1)");
      readConfig(config, "outputfileSigmasPerArcPod2", fileNameOutArcSigma.at(POD2), Config::OPTIONAL, "", "accuracies of each arc (POD2)");
      endSequence(config);
    }
    if(readConfigSequence(config, "estimateEpochSigmas", Config::OPTIONAL, "", ""))
    {
      estimateEpochSigmas = TRUE;
      readConfig(config, "outputfileSigmasPerEpochSst",  fileNameOutEpochSigma.at(SST),  Config::OPTIONAL, "", "accuracies of each epoch (SST)");
      readConfig(config, "outputfileSigmasPerEpochPod1", fileNameOutEpochSigma.at(POD1), Config::OPTIONAL, "", "accuracies of each epoch (POD1)");
      readConfig(config, "outputfileSigmasPerEpochPod2", fileNameOutEpochSigma.at(POD2), Config::OPTIONAL, "", "accuracies of each epoch (POD2)");
      endSequence(config);
    }
    if(readConfigSequence(config, "estimateCovarianceFunctions", Config::OPTIONAL, "", ""))
    {
      estimateCovarianceFunctionVCE = TRUE;
      readConfig(config, "outputfileCovarianceFunctionSst",  fileNameOutCovFunc.at(SST),  Config::OPTIONAL, "", "covariance function");
      readConfig(config, "outputfileCovarianceFunctionPod1", fileNameOutCovFunc.at(POD1), Config::OPTIONAL, "", "covariance functions for along, cross, radial direction");
      readConfig(config, "outputfileCovarianceFunctionPod2", fileNameOutCovFunc.at(POD2), Config::OPTIONAL, "", "covariance functions for along, cross, radial direction");
      endSequence(config);
    }
    if(readConfigSequence(config, "estimateSstArcCovarianceSigmas", Config::OPTIONAL, "", ""))
    {
      estimateSigmasCovSst = TRUE;
      readConfig(config, "outputfileSigmasCovarianceMatrixArc", fileNameOutSigmasCovSst, Config::OPTIONAL, "", "one variance factor per matrix");
      endSequence(config);
    }
    if(readConfigSequence(config, "computeResiduals", Config::OPTIONAL, "", ""))
    {
      estimateResiduals = TRUE;
      readConfig(config, "outputfileSstResiduals",  fileNameResiduals.at(SST),  Config::OPTIONAL, "", "");
      readConfig(config, "outputfilePod1Residuals", fileNameResiduals.at(POD1), Config::OPTIONAL, "", "");
      readConfig(config, "outputfilePod2Residuals", fileNameResiduals.at(POD2), Config::OPTIONAL, "", "");
      endSequence(config);
    }
    readConfig(config, "observation", observationMisc, Config::MUSTSET,  "", "");
    if(readConfigSequence(config, "covarianceSst", Config::MUSTSET, "", ""))
    {
      readConfig(config, "sigma",                              sigma0.at(SST),               Config::DEFAULT,  "1", "apriori factor of covariance function");
      readConfig(config, "inputfileSigmasPerArc",              fileNameInArcSigma.at(SST),   Config::OPTIONAL, "",  "apriori different accuaries for each arc (multiplicated with sigma)");
      readConfig(config, "inputfileSigmasPerEpoch",            fileNameInEpochSigma.at(SST), Config::OPTIONAL, "",  "apriori different accuaries for each epoch");
      readConfig(config, "inputfileCovarianceFunction",        fileNameInCovFunc.at(SST),    Config::OPTIONAL, "",  "approximate covariances in time");
      readConfig(config, "inputfileCovarianceMatrixArc",       fileNamesCovSst,              Config::OPTIONAL, "",  "Must be given per sst arc with correct dimensions.");
      readConfig(config, "inputfileSigmasCovarianceMatrixArc", fileNameInSigmasCovSst,       Config::OPTIONAL, "",  "Vector with one sigma for each <inputfileCovarianceMatrixArc>");
      readConfig(config, "sampling",                           sampling.at(SST),             Config::DEFAULT,  "5", "[seconds] sampling of the covariance function");
      endSequence(config);
    }
    if(readConfigSequence(config, "covariancePod1", Config::MUSTSET, "", ""))
    {
      readConfig(config, "sigma",                        sigma0.at(POD1),               Config::DEFAULT,  "1",  "apriori factor of covariance function");
      readConfig(config, "inputfileSigmasPerArc",        fileNameInArcSigma.at(POD1),   Config::OPTIONAL, "",   "apriori different accuaries for each arc (multiplicated with sigma)");
      readConfig(config, "inputfileSigmasPerEpoch",      fileNameInEpochSigma.at(POD1), Config::OPTIONAL, "",   "apriori different accuaries for each epoch");
      readConfig(config, "inputfileCovarianceFunction",  fileNameInCovFunc.at(POD1),    Config::OPTIONAL, "",   "approximate covariances in time");
      readConfig(config, "inputfileCovariancePodEpoch",  fileNameInCovEpochPod1,        Config::OPTIONAL, "",   "3x3 epoch covariances");
      readConfig(config, "sampling",                     sampling.at(POD1),             Config::DEFAULT,  "30", "[seconds] sampling of the covariance function");
      endSequence(config);
    }
    if(readConfigSequence(config, "covariancePod2", Config::MUSTSET, "", ""))
    {
      readConfig(config, "sigma",                        sigma0.at(POD2),               Config::DEFAULT,  "1",  "apriori factor of covariance function");
      readConfig(config, "inputfileSigmasPerArc",        fileNameInArcSigma.at(POD2),   Config::OPTIONAL, "",   "apriori different accuaries for each arc (multiplicated with sigma)");
      readConfig(config, "inputfileSigmasPerEpoch",      fileNameInEpochSigma.at(POD2), Config::OPTIONAL, "",   "apriori different accuaries for each epoch");
      readConfig(config, "inputfileCovarianceFunction",  fileNameInCovFunc.at(POD2),    Config::OPTIONAL, "",   "approximate covariances in time");
      readConfig(config, "inputfileCovariancePodEpoch",  fileNameInCovEpochPod2,        Config::OPTIONAL, "",   "3x3 epoch covariances");
      readConfig(config, "sampling",                     sampling.at(POD2),             Config::DEFAULT,  "30", "[seconds] sampling of the covariance function");
      endSequence(config);
    }
    if(readConfigSequence(config, "estimateShortTimeVariations", Config::OPTIONAL, "", "co-estimate short time gravity field variations"))
    {
      readConfig(config, "estimateSigma",               estimateSigmaShortTimeModel, Config::DEFAULT, "0", "estimate standard deviation via VCE");
      readConfig(config, "autoregressiveModelSequence", arSequence,                  Config::MUSTSET, "",  "AR model sequence for constraining short time gravity variations");
      readConfig(config, "parameterSelection",          parameterShortTime,          Config::MUSTSET, "",  "parameters describing the short time gravity field");
      endSequence(config);
    }
    readConfig(config, "downweightPod",          downweightPod,      Config::DEFAULT,  "1",    "downweight factor for POD");
    readConfig(config, "inputfileArcList",       fileNameArcList,    Config::OPTIONAL, "",     "list to correspond points of time to arc numbers");
    readConfig(config, "iterationCount",         iterCount,          Config::DEFAULT,  "3",    "(maximum) number of iterations for the estimation of calibration parameter and error PSD");
    readConfig(config, "variableNameIterations", iterVariableName,   Config::OPTIONAL, "",     "All output fileNames in preprocessing iteration are expanded with this variable prior to writing to disk");
    readConfig(config, "defaultBlockSize",       defaultBlockSize,   Config::DEFAULT,  "2048", "block size of static normal equation blocks");
    if(isCreateSchema(config)) return;

    // =============================================

    // init
    // ----
    const UInt arcCount        = observationMisc->arcCount();
    const UInt countAParameter = observationMisc->parameterCount();

    arcsInterval  = {0, arcCount};
    timesInterval = {Time(), date2time(9999,1,1)};
    if(!fileNameArcList.empty())
    {
      logStatus<<"read arc list <"<<fileNameArcList<<">"<<Log::endl;
      readFileArcList(fileNameArcList, arcsInterval, timesInterval);
    }

    // init arc sigmas
    // ---------------
    for(UInt idType : {SST, POD1, POD2})
    {
      sigma.at(idType) = Vector(arcCount, 1.0);
      if(!fileNameInArcSigma.at(idType).empty())
        readFileMatrix(fileNameInArcSigma.at(idType), sigma.at(idType));
      if(sigma.at(idType).rows()  != arcCount)
        throw(Exception("sigmasPerArc "+typeName.at(idType)+" contains wrong number of arcs"));
    }

    fileCovEpochPod1.open(fileNameInCovEpochPod1);
    fileCovEpochPod2.open(fileNameInCovEpochPod2);

    // ===================================================

    // normal equations of short time model
    // ------------------------------------
    UInt countShortTimeParameters = 0;
    std::vector<std::vector<std::vector<Matrix>>> normalsShortTime;
    if(arSequence)
    {
      logStatus<<"initialize normal equations of short time gravity field model"<<Log::endl;
      countShortTimeParameters = arSequence->dimension();
      normalsShortTime = arSequence->normalEquationSequence();
    }

    // init normal equations
    // ---------------------
    logStatus<<"initialize normal equations"<<Log::endl;
    normals.init(observationMisc, timesInterval, defaultBlockSize, comm, FALSE/*sortStateBeforeGravityParameter*/, countShortTimeParameters, parameterShortTime);

    // parameter names
    // ---------------
    if(!fileNameParaName.empty() && Parallel::isMaster(comm))
    {
      logStatus<<"write parameter names <"<<fileNameParaName<<">"<<Log::endl;
      writeFileParameterName(fileNameParaName, normals.parameterNames);
    }

    // =============================================

    // setup observation equations
    // ---------------------------
    logStatus<<"set up observation equations"<<Log::endl;
    observationArc.resize(arcCount);
    std::vector<UInt> processNo = Parallel::forEachInterval(arcCount, arcsInterval, [this](UInt arcNo)
    {
      const UInt idInterval = findInterval(arcNo);
      if(timesInterval.size())
        observationMisc->setInterval(timesInterval.at(idInterval), timesInterval.at(idInterval+1));
      observationArc.at(arcNo) = observationMisc->computeArc(arcNo);
    }, comm);
    observationMisc = nullptr;

    // =============================================

    // set used blocks
    // ---------------
    logStatus<<"setup normal equations"<<Log::endl;
    normals.setBlocks(arcsInterval);

    // =============================================

    // read SST covariance matrices
    // ----------------------------
    CovSst.resize(arcCount);
    if(fileNamesCovSst.size())
    {
      logStatus<<"read arc-wise sst covariance matrices"<<Log::endl;
      Parallel::forEachProcess(arcCount, [&](UInt arcNo)
      {
        CovSst.at(arcNo).resize(fileNamesCovSst.size());
        for(UInt i=0; i<fileNamesCovSst.size(); i++)
          readFileMatrix(fileNamesCovSst.at(i).appendBaseName(".arc"+arcNo%"%03i"s), CovSst.at(arcNo).at(i));
      }, processNo, comm);
    }

    sigmasCovSst = Vector(fileNamesCovSst.size(), 1.);
    if(!fileNameInSigmasCovSst.empty())
    {
      readFileMatrix(fileNameInSigmasCovSst, sigmasCovSst);
      if(sigmasCovSst.rows() != fileNamesCovSst.size())
        throw(Exception("Number of sigmas not compatible with number of given arc-wise SST covariance matrices"));
    }

    // =============================================

    std::array<UInt, TYPESIZE> covLength; covLength.fill(0);
    for(UInt idType : {SST, POD1, POD2})
    {
      // Determine max. length of ovariance functions
      for(UInt arcNo=0; arcNo<arcCount; arcNo++)
        if(observationArc.at(arcNo).times.at(idType).size())
          covLength.at(idType) = std::max(covLength.at(idType), static_cast<UInt>(std::round((observationArc.at(arcNo).times.at(idType).back()-observationArc.at(arcNo).times.at(idType).front()).seconds()/sampling.at(idType))+1));
      Parallel::reduceMax(covLength.at(idType), 0, comm);
      Parallel::broadCast(covLength.at(idType), 0, comm);

      // transformation PSD <-> covFunc
      CosTransform.at(idType) = Vce::cosTransform(covLength.at(idType));

      // init covariance function
      covFunc.at(idType)  = Vce::readCovarianceFunction(fileNameInCovFunc.at(idType),  covLength.at(idType),  covColumns.at(idType), sampling.at(idType));
      covFunc.at(idType).column(1, covColumns.at(idType))  *= std::pow(sigma0.at(idType), 2);
      Psd.at(idType) = CosTransform.at(idType) * covFunc.at(idType).column(1, covColumns.at(idType));

      // init epoch sigmas
      arcListEpochSigma.at(idType).resize(arcCount);
      if(estimateEpochSigmas)
      {
        InstrumentFile file(fileNameInEpochSigma.at(idType));
        for(UInt arcNo=0; arcNo<arcCount; arcNo++)
          if(Parallel::myRank(comm) == processNo.at(arcNo))
          {
            arcListEpochSigma.at(idType).at(arcNo) = file.readArc(arcNo);
            if(!arcListEpochSigma.at(idType).at(arcNo).size())
              for(UInt i=0; i<observationArc.at(arcNo).times.at(idType).size(); i++)
              {
                ObservationSigmaEpoch epoch;
                epoch.time = observationArc.at(arcNo).times.at(idType).at(i);
                arcListEpochSigma.at(idType).at(arcNo).push_back(epoch);
              }
          }
      } // if(estimateEpochSigmas)
    } // for(idType)

    // =============================================

    // Iteration
    // ---------
    Double sigma2ShortTimeModel = 1.;
    for(UInt iter=0; iter<iterCount; iter++)
    {
      logInfo<<"starting iteration "<<iter<<Log::endl;
      VariableList variableIteration;
      if(iterVariableName.size())
        variableIteration.setVariable(iterVariableName, iter);

      // solve normal equations
      // ----------------------
      if(countAParameter)
      {
        logStatus<<"accumulate system of normal equations"<<Log::endl;
        normals.setNull();
        Parallel::forEachProcess(arcCount, [this](UInt arcNo) {buildNormals(arcNo);}, processNo, comm);
        logStatus<<"collect system of normal equations"<<Log::endl;
        normals.reduceSum();

        // add normals of short time model
        // -------------------------------
        if(normalsShortTime.size())
        {
          logStatus<<"add normals of short time model"<<Log::endl;
          normals.addShortTimeNormals(sigma2ShortTimeModel, normalsShortTime);
        }

        // cholesky and forward step
        // -------------------------
        logStatus<<"solve system of normal equations"<<Log::endl;
        const Double sigma = normals.solve(x, Wz);
        logInfo<<"  aposteriori sigma = "<<sigma<<Log::endl;

        if(Parallel::isMaster(comm) && !fileNameSolution.empty())
        {
          logStatus<<"write solution to <"<<fileNameSolution(variableIteration)<<">"<<Log::endl;
          writeFileMatrix(fileNameSolution(variableIteration), x);
        }

        if(!fileNameSigmax.empty())
        {
          logStatus<<"inverte cholesky matrix and write standard deviations to <"<<fileNameSigmax(variableIteration)<<">"<<Log::endl;
          Vector sigma = normals.parameterStandardDeviation();
          if(Parallel::isMaster(comm))
            writeFileMatrix(fileNameSigmax(variableIteration), sigma);
        } // if(!fileNameSigmax.empty())

        if(estimateSigmaShortTimeModel && normalsShortTime.size())
        {
          logStatus<<"compute standard deviation of short time gravity model"<<Log::endl;
          Double s2 = normals.estimateShortTimeNormalsVariance(sigma2ShortTimeModel, normalsShortTime, x, Wz);
          logInfo<<"  sigma: "<<std::sqrt(s2)<<Log::endl;
          if(!std::isnan(s2) && (s2 > 0))
            sigma2ShortTimeModel = s2;
        }
      } // if(countAParameter)
      Parallel::barrier(comm);

      // compute residuals
      // --------------------
      if(estimateResiduals || estimateEpochSigmas)
      {
        logStatus<<"compute residuals"<<Log::endl;
        for(UInt idType : {SST, POD1, POD2})
        {
          arcListResiduals.at(idType).clear();
          arcListResiduals.at(idType).resize(arcCount);
        }
        Parallel::forEachProcess(arcCount, [this](UInt arcNo) {computeResiduals(arcNo);}, processNo, comm, FALSE/*timing*/);
        for(UInt idType : {SST, POD1, POD2})
        {
          Parallel::forEachProcess(arcListResiduals.at(idType), [this, idType](UInt arcNo) {return arcListResiduals.at(idType).at(arcNo);}, processNo, comm, FALSE/*timing*/);
          if(Parallel::isMaster(comm) && (!fileNameResiduals.at(idType).empty()))
          {
            logStatus<<"write residual file <"<<fileNameResiduals.at(idType)(variableIteration)<<">"<<Log::endl;
            InstrumentFile::write(fileNameResiduals.at(idType)(variableIteration), arcListResiduals.at(idType));
          }
        }
      }

      // compute redundancies
      // --------------------
      if((estimateArcSigmas || estimateCovarianceFunctionVCE || estimateSigmasCovSst))
      {
        logStatus<<"compute redundancies"<<Log::endl;
        for(UInt idType : {SST, POD1, POD2})
        {
          sigmaNew.at(idType) = Vector(arcCount);
          ePe.at(idType) = redundancy.at(idType) = Matrix(covLength.at(idType), covColumns.at(idType));
        }
        ePeCovSst = redundancyCovSst = Vector(sigmasCovSst.rows());
        Parallel::forEachProcess(arcCount, [this](UInt arcNo) {computeRedundancies(arcNo);}, processNo, comm);
      }

      // sigmas per arc
      // --------------
      if(estimateArcSigmas)
      {
        for(UInt idType : {SST, POD1, POD2})
        {
          Parallel::reduceSum(sigmaNew.at(idType), 0, comm);
          if(Parallel::isMaster(comm))
          {
            sigma.at(idType) = (1./Vce::meanSigma(sigmaNew.at(idType))) * sigmaNew.at(idType);
            logInfo<<"  "<<typeName.at(idType)<<" sigma per arc (median): "<<Vce::meanSigma(sigmaNew.at(idType))<<Log::endl;
          }
          Parallel::broadCast(sigma.at(idType), 0, comm);
        }

        for(UInt idType : {SST, POD1, POD2})
          if(Parallel::isMaster(comm) && !fileNameOutArcSigma.at(idType).empty())
          {
            logStatus<<"write arc sigma file <"<<fileNameOutArcSigma.at(idType)(variableIteration)<<">"<<Log::endl;
            writeFileMatrix(fileNameOutArcSigma.at(idType)(variableIteration), sigma.at(idType));
          }
      }

      // sigmas per epoch
      // --------------
      if(estimateEpochSigmas)
      {
        logStatus<<"estimate epoch sigmas"<<Log::endl;
        Parallel::forEachProcess(arcCount, [this](UInt arcNo) {computeEpochSigmas(arcNo);}, processNo, comm);
        for(UInt idType : {SST, POD1, POD2})
        {
          Parallel::forEachProcess(arcListEpochSigma.at(idType), [this, idType](UInt arcNo) {return arcListEpochSigma.at(idType).at(arcNo);}, processNo, comm, FALSE/*timing*/);
          if(Parallel::isMaster(comm) && !fileNameOutEpochSigma.at(idType).empty())
          {
            logStatus<<"write epoch sigma file <"<<fileNameOutEpochSigma.at(idType)(variableIteration)<<">"<<Log::endl;
            InstrumentFile::write(fileNameOutEpochSigma.at(idType)(variableIteration), arcListEpochSigma.at(idType));
          }
        }
        Parallel::barrier(comm);
      } // if(estimateEpochSigmas)

      // estimate new PSD through variance component estimation
      // ------------------------------------------------------
      if(estimateCovarianceFunctionVCE)
      {
        logStatus<<"estimate PSDs"<<Log::endl;
        for(UInt idType : {SST, POD1, POD2})
        {
          Parallel::reduceSum(ePe.at(idType), 0, comm);
          Parallel::reduceSum(redundancy.at(idType), 0, comm);
          if(Parallel::isMaster(comm))
          {
            Double maxFactor = 0;
            Vce::estimatePsd(ePe.at(idType), redundancy.at(idType), Psd.at(idType), maxFactor);
            if((idType == POD1) || (idType == POD2))
              maxFactor /= downweightPod;
            logInfo<<"  max. PSD adjustment factor "<<typeName.at(idType)<<": "<<maxFactor<<Log::endl;
          }
          Parallel::broadCast(Psd.at(idType), 0, comm);
          // compute new covariance function
          copy(CosTransform.at(idType) * Psd.at(idType), covFunc.at(idType).column(1, covColumns.at(idType)));
        }

        // Write covariance function to file
        for(UInt idType : {SST, POD1, POD2})
          if(Parallel::isMaster(comm) && !fileNameOutCovFunc.at(idType).empty())
          {
            logStatus<<"write covariance function file <"<<fileNameOutCovFunc.at(idType)(variableIteration)<<">"<<Log::endl;
            writeFileMatrix(fileNameOutCovFunc.at(idType)(variableIteration), covFunc.at(idType));
          }
      }

      // estimate variance factor for arc-wise SST covariance matrices
      // -------------------------------------------------------------
      if(estimateSigmasCovSst)
      {
        Parallel::reduceSum(ePeCovSst, 0, comm);
        Parallel::reduceSum(redundancyCovSst, 0, comm);
        if(Parallel::isMaster(comm))
        {
          for(UInt i=0; i<sigmasCovSst.rows(); i++)
          {
            const Double alpha = std::sqrt(ePeCovSst(i)/redundancyCovSst(i));
            sigmasCovSst(i) *= alpha;
            logStatus<<"  sigma of SST covariance matrix (current/total): "<<alpha<<"/"<<sigmasCovSst(i)<<Log::endl;
          }
        }
        Parallel::broadCast(sigmasCovSst, 0, comm);

        if(Parallel::isMaster(comm) && !fileNameOutSigmasCovSst.empty())
        {
          logStatus<<"write arc-wise SST variance factors <"<<fileNameOutSigmasCovSst(variableIteration)<<">"<<Log::endl;
          writeFileMatrix(fileNameOutSigmasCovSst(variableIteration), sigmasCovSst);
        }
      }

      // downweight POD
      // --------------
      for(UInt idType : {POD1, POD2})
      {
        Psd.at(idType) *= std::pow(downweightPod, 2);
        covFunc.at(idType).column(1, covColumns.at(idType)) *= std::pow(downweightPod, 2);
      }
    } // for(iter)
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

UInt PreprocessingSst::findInterval(UInt arcNo) const
{
  for(UInt idInterval=0; idInterval+1<arcsInterval.size(); idInterval++)
    if(arcNo < arcsInterval.at(idInterval+1))
      return idInterval;
  return 0;
}

/***********************************************/

void PreprocessingSst::decorrelate(UInt arcNo, const std::array<UInt, TYPESIZE> &count, std::array<Matrix, TYPESIZE> &W, const std::list<MatrixSlice> &A)
{
  try
  {
    // count observations and calculate index
    // --------------------------------------
    std::array<UInt, TYPESIZE> idx;
    std::array<std::list<MatrixSlice>, TYPESIZE> WA; // type specific slices of A
    UInt obsCount = 0;
    for(UInt idType : {SST, POD1, POD2})
    {
      idx.at(idType) = obsCount;
      obsCount      += covColumns.at(idType) * count.at(idType);
      for(const MatrixSlice &a : A)
        WA.at(idType).push_back(a.row(idx.at(idType), covColumns.at(idType) * count.at(idType)));
    }

    if(count.at(SST))
    {
      W.at(SST) = Matrix();
      if(CovSst.at(arcNo).size())
      {
        W.at(SST) = std::pow(sigmasCovSst.at(0),2) * CovSst.at(arcNo).at(0);
        for(UInt i=1; i<CovSst.at(arcNo).size(); i++)
          axpy(std::pow(sigmasCovSst.at(i),2), CovSst.at(arcNo).at(i), W.at(SST));
      }

      CovarianceSst::decorrelate(observationArc.at(arcNo).times.at(SST), sigma.at(SST)(arcNo), arcListEpochSigma.at(SST).at(arcNo), covFunc.at(SST), W.at(SST), WA.at(SST));
    }

    if(count.at(POD1))
      W.at(POD1) = CovariancePod::decorrelate(observationArc.at(arcNo).pod1, sigma.at(POD1)(arcNo), arcListEpochSigma.at(POD1).at(arcNo), fileCovEpochPod1.readArc(arcNo), covFunc.at(POD1), WA.at(POD1));

    if(count.at(POD2))
      W.at(POD2) = CovariancePod::decorrelate(observationArc.at(arcNo).pod2, sigma.at(POD2)(arcNo), arcListEpochSigma.at(POD2).at(arcNo), fileCovEpochPod2.readArc(arcNo), covFunc.at(POD2), WA.at(POD2));
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

void PreprocessingSst::buildNormals(UInt arcNo)
{
  try
  {
    if(observationArc.at(arcNo).A.size() == 0)
      return;

    // Decorrelation
    // -------------
    Matrix Wl = observationArc.at(arcNo).l;
    Matrix WA = observationArc.at(arcNo).A;
    Matrix WB = observationArc.at(arcNo).B;
    std::array<Matrix, TYPESIZE> W;
    decorrelate(arcNo, {observationArc.at(arcNo).times.at(SST).size(), observationArc.at(arcNo).times.at(POD1).size(), observationArc.at(arcNo).times.at(POD2).size()},
                W, {Wl, WA, WB});

    normals.accumulate(findInterval(arcNo), Wl, WA, WB);
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

void PreprocessingSst::computeRedundancies(UInt arcNo)
{
  try
  {
    if(observationArc.at(arcNo).l.size() == 0)
      return;

    // count observations and calculate index
    // --------------------------------------
    std::array<UInt, TYPESIZE> count, idx;
    UInt obsCount = 0;
    for(UInt idType : {SST, POD1, POD2})
    {
      count.at(idType) = observationArc.at(arcNo).times.at(idType).size();
      idx.at(idType)   = obsCount;
      obsCount        += covColumns.at(idType) * count.at(idType);
    }

    // Decorrelation
    // -------------
    Matrix Wl = observationArc.at(arcNo).l;
    Matrix WA = observationArc.at(arcNo).A;
    Matrix WB = observationArc.at(arcNo).B;
    std::array<Matrix, TYPESIZE> W;
    decorrelate(arcNo, count, W, {Wl, WA, WB});

    // eliminate arc dependent parameters
    // ----------------------------------
    if(WB.size())
    {
      Vector tau = QR_decomposition(WB);
      QTransMult(WB, tau, Wl);             // transform observations: l:= Q'l
      Wl.row(0, WB.columns()).setNull();   // residuals: remove WB*x
      QMult(WB, tau, Wl);                  // back transformation

      if(WA.size())
      {
        QTransMult(WB, tau, WA);           // transform design matrix A:=Q'A
        WA.row(0, WB.columns()).setNull(); // residuals: remove WB*x
        QMult(WB, tau, WA);                // back transformation
      }

      generateQ(WB, tau);
    }

    // decorrelated residuals
    // ----------------------
    Matrix We = Wl;
    Matrix WAz(Wl.rows(), Wz.columns());
    normals.designMatMult(findInterval(arcNo), -1., WA, x,  We);
    normals.designMatMult(findInterval(arcNo), +1., WA, Wz, WAz);

    // ============================================

    if(!estimateCovarianceFunctionVCE)
    {
      for(UInt idType : {SST, POD1, POD2})
        if(count.at(idType))
        {
          const Double redundancy = covColumns.at(idType)*count.at(idType)
                                  - quadsum(WAz.row(idx.at(idType), covColumns.at(idType)*count.at(idType)))
                                  - quadsum(WB.row (idx.at(idType), covColumns.at(idType)*count.at(idType)));
          if(redundancy > 0.3)
            sigmaNew.at(idType)(arcNo) = std::sqrt(quadsum(We.row(idx.at(idType),  covColumns.at(idType)*count.at(idType)))/redundancy) * sigma.at(idType)(arcNo);
        }
      return;
    } // if(!estimateCovarianceFunctionVCE)

    // ============================================

    // variance component estimation
    // -----------------------------
    Matrix R;
    Vector WWe;
    std::array<std::vector<UInt>, TYPESIZE> index;
    std::array<Double, TYPESIZE> ePeSum, redundancySum; ePeSum.fill(0); redundancySum.fill(0);
    for(UInt idType : {SST, POD1, POD2})
    {
      index.at(idType).resize(observationArc.at(arcNo).times.at(idType).size());
      for(UInt i=0; i<index.at(idType).size(); i++)
        index.at(idType).at(i) = static_cast<UInt>(std::round((observationArc.at(arcNo).times.at(idType).at(i)-observationArc.at(arcNo).times.at(idType).front()).seconds()/sampling.at(idType)));
    }

    if(count.at(SST))
    {
      Vce::redundancy(W.at(SST), We.row(idx.at(SST), count.at(SST)),
                      WAz.row(idx.at(SST), count.at(SST)), WB.row(idx.at(SST), count.at(SST)), R, WWe);
      Vce::psd(R, WWe, index.at(SST), sigma.at(SST)(arcNo), CosTransform.at(SST), Psd.at(SST),
               ePe.at(SST), redundancy.at(SST), ePeSum.at(SST), redundancySum.at(SST));

      // Arc-wise covariance matrices
      if(estimateSigmasCovSst)
        for(UInt i=0; i<CovSst.at(arcNo).size(); i++)
          Vce::matrix(R, WWe, std::pow(sigmasCovSst(i),2) * CovSst.at(arcNo).at(i), ePeCovSst(i), redundancyCovSst(i));
    }

    for(UInt idType : {POD1, POD2})
      if(count.at(idType))
      {
        Vce::redundancy(W.at(idType), We.row(idx.at(idType), 3*count.at(idType)),
                        WAz.row(idx.at(idType), 3*count.at(idType)), WB.row(idx.at(idType), 3*count.at(idType)), R, WWe);
        Vce::psd(R, WWe, index.at(idType), sigma.at(idType)(arcNo), CosTransform.at(idType), Psd.at(idType),
                 ePe.at(idType), redundancy.at(idType), ePeSum.at(idType), redundancySum.at(idType));
      }


    for(UInt idType : {SST, POD1, POD2})  // compute new sigma (for this arc)
      if(redundancySum.at(idType) > 0.3)
        sigmaNew.at(idType)(arcNo) = std::sqrt(ePeSum.at(idType)/redundancySum.at(idType)) * sigma.at(idType)(arcNo);
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

void PreprocessingSst::computeResiduals(UInt arcNo)
{
  try
  {
    if(observationArc.at(arcNo).l.size() == 0)
      return;

    // count observations and calculate index
    // --------------------------------------
    std::array<UInt, TYPESIZE> count, idx;
    UInt obsCount = 0;
    for(UInt idType : {SST, POD1, POD2})
    {
      count.at(idType) = observationArc.at(arcNo).times.at(idType).size();
      idx.at(idType)   = obsCount;
      obsCount        += covColumns.at(idType) * count.at(idType);
    }

    // Residuals
    // ---------
    Matrix e = observationArc.at(arcNo).l;
    normals.designMatMult(findInterval(arcNo), -1., observationArc.at(arcNo).A, x, e);

    // eliminate arc dependent parameters
    // ----------------------------------
    if(observationArc.at(arcNo).B.size())
    {
      Matrix We = e;
      Matrix WB = observationArc.at(arcNo).B;
      std::array<Matrix, TYPESIZE> W;
      decorrelate(arcNo, count, W, {We, WB});
      Vector tau = QR_decomposition(WB);
      QTransMult(WB, tau, We); // transform observations: l:= Q'l
      Matrix y = We.row(0, tau.rows());
      triangularSolve(1., WB.row(0, tau.rows()), y);
      matMult(-1, observationArc.at(arcNo).B, y, e);
    }

    // create Sst arc
    // --------------
    for(UInt i=0; i<count.at(SST); i++)
    {
      SatelliteTrackingEpoch epoch;
      epoch.time  = observationArc.at(arcNo).times.at(SST).at(i);
      epoch.range = epoch.rangeRate = epoch.rangeAcceleration = e(idx.at(SST)+i,0);
      arcListResiduals.at(SST).at(arcNo).push_back(epoch);
    }

    // create Pod arcs
    // ---------------
    for(UInt idType : {POD1, POD2})
      for(UInt i=0; i<count.at(idType); i++)
      {
        OrbitEpoch epoch;
        epoch.time     = observationArc.at(arcNo).times.at(idType).at(i);
        epoch.position = Vector3d(e.row(idx.at(idType)+3*i, 3));
        arcListResiduals.at(idType).at(arcNo).push_back(epoch);
      }
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

void PreprocessingSst::computeEpochSigmas(UInt arcNo)
{
  try
  {
    const Double huber = 2.5;

    if(covFunc.at(SST).size())
    {
      const Double threshold2 = std::pow(huber*sigma.at(SST)(arcNo), 2) * covFunc.at(SST)(0,1);
      for(UInt i=0; i<observationArc.at(arcNo).times.at(SST).size(); i++)
      {
        const Double e2 = std::pow(dynamic_cast<const SatelliteTrackingEpoch &>(arcListResiduals.at(SST).at(arcNo).at(i)).rangeRate, 2);
        arcListEpochSigma.at(SST).at(arcNo).at(i).sigma = 0.;
        if(e2 > threshold2)
          arcListEpochSigma.at(SST).at(arcNo).at(i).sigma = std::sqrt(e2-threshold2);
      }
    }

    for(UInt idType : {POD1, POD2})
      if(covFunc.at(idType).size())
      {
        const Double threshold2 = std::pow(huber*sigma.at(idType)(arcNo), 2) * sum(covFunc.at(idType).slice(0, 1, 1, 3));
        for(UInt i=0; i<observationArc.at(arcNo).times.at(idType).size(); i++)
        {
          const Double e2 = dynamic_cast<const OrbitEpoch &>(arcListResiduals.at(idType).at(arcNo).at(i)).position.quadsum();
          arcListEpochSigma.at(idType).at(arcNo).at(i).sigma = 0.;
          if(e2 > threshold2)
            arcListEpochSigma.at(idType).at(arcNo).at(i).sigma = std::sqrt((e2-threshold2)/3);
        }
      }
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/