1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
|
/***********************************************/
/**
* @file preprocessingVariationalEquation.cpp
*
* @brief Integrate Variational Equations.
*
* @author Torsten Mayer-Guerr
* @date 2012-05-30
*
*/
/***********************************************/
// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program integrates an orbit dynamically using the given forces and setup the state transition matrix
for each time step. These are the prerequisite for a least squares adjustement (e.g. gravity field determination) using
the variational equation approach. The variational equations are computed arc wise as defined by \configFile{inputfileOrbit}{instrument}.
This means for each arc new initial state parameters are setup.
In a first step the \configClass{forces}{forcesType} acting on the satellite are evaluated at the apriori positions given
by \configFile{inputfileOrbit}{instrument}. Non-conservative forces like solar radiation pressure needs the orientation of the
satellite (\configFile{inputfileStarCamera}{instrument}) and additional a satellite macro model (\config{satelliteModel})
with the surface properties. Furthermore \configFile{inputfileAccelerometer}{instrument} observations are also considered.
In a second step the accelerations are integrated twice to an dynamic orbit using a moving polynomial with the degree
\config{integrationDegree}. The orbit is corrected to be self-consistent. This means the forces should be evaluated
at the new integrated positions instead of the apriori ones. This correction is computed in a linear approximation
using the gradient of the forces with respect to the positions (\config{gradientfield}). As this term is small generally
only the largest force components has to be considered. A low degree spherical harmonic expansion of the static gravity
field (about up to degree 5) is sufficient in almost all cases. In this step also the state transition matrix (the partial
derivatices of the current state, position and velocity) with respect to the initial state is computed.
The integrated orbit together with the state transitions are stored in \configFile{outputfileVariational}{variationalEquation},
the integrated orbit only in \configFile{outputfileOrbit}{instrument}.
To improve the numerical stability a reference ellipse can be reduced beforehand using Enke's method (\config{useEnke}).
Mathematically the result is the same, but as the large central term is removed before and restored
afterwards more digits are available for the computation.
The integrated orbit should be fitted to observations afterwards by the programs
\program{PreprocessingVariationalEquationOrbitFit} and/or \program{PreprocessingVariationalEquationSstFit}.
They apply a least squares adjustment by estimating some satellite parameters (e.g. an accelerometer bias).
If the fitted orbit is too far away from the original \configFile{inputfileOrbit}{instrument} the linearization may not be
accurate enough. In this case \program{PreprocessingVariationalEquation} should be run again with the fitted orbit
as \configFile{inputfileOrbit}{instrument} and introducing the \config{estimatedParameters} as additional forces.
)";
/***********************************************/
#include "programs/program.h"
#include "base/equinoctial.h"
#include "files/fileMatrix.h"
#include "files/fileInstrument.h"
#include "files/fileSatelliteModel.h"
#include "files/fileVariationalEquation.h"
#include "classes/earthRotation/earthRotation.h"
#include "classes/ephemerides/ephemerides.h"
#include "classes/forces/forces.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/parametrizationAcceleration/parametrizationAcceleration.h"
/***** CLASS ***********************************/
/** @brief Integrate Variational Equations.
* @ingroup programsGroup */
class PreprocessingVariationalEquation
{
SatelliteModelPtr satellite;
InstrumentFile orbitFile;
InstrumentFile starCameraFile;
InstrumentFile accelerometerFile;
ForcesPtr forces;
EarthRotationPtr earthRotation;
EphemeridesPtr ephemerides;
GravityfieldPtr gradientfield;
ParametrizationAccelerationPtr parameterAcceleration;
Matrix parameter;
Double GM;
Double maxPosDiff;
UInt integrationDegree;
std::vector<Vector> coeff_g, coeff_tg;
VariationalEquationArc computeArc(UInt arcNo);
Matrix integrate2Position(Double deltaT, const_MatrixSliceRef g) const;
Matrix integrate2Velocity(Double deltaT, const_MatrixSliceRef g) const;
Matrix solve(Double deltaT, const std::vector<Tensor3d> &tensor, const_MatrixSliceRef l) const;
Matrix refine(Double deltaT, const std::vector<Tensor3d> &tensor, const_MatrixSliceRef x) const;
Matrix approxInverse(Double deltaT, const std::vector<Tensor3d> &tensor, const_MatrixSliceRef x) const;
public:
void run(Config &config, Parallel::CommunicatorPtr comm);
};
GROOPS_REGISTER_PROGRAM(PreprocessingVariationalEquation, PARALLEL, "Integrate Variational Equations.", Preprocessing, VariationalEquation)
/***********************************************/
/***********************************************/
void PreprocessingVariationalEquation::run(Config &config, Parallel::CommunicatorPtr comm)
{
try
{
FileName fileNameOutVariational, fileNameOutOrbit;
FileName fileNameSatellite;
FileName orbitName, starCameraName, accName;
FileName fileNameSolution;
GM = 0;
renameDeprecatedConfig(config, "satelliteModel", "inputfileSatelliteModel", date2time(2020, 8, 19));
readConfig(config, "outputfileVariational", fileNameOutVariational, Config::MUSTSET, "", "approximate position and integrated state matrix");
readConfig(config, "outputfileOrbit", fileNameOutOrbit, Config::OPTIONAL, "", "integrated orbit");
readConfig(config, "inputfileSatelliteModel", fileNameSatellite, Config::OPTIONAL, "{groopsDataDir}/satelliteModel/", "satellite macro model");
readConfig(config, "inputfileOrbit", orbitName, Config::MUSTSET, "", "approximate position, used to evaluate the force");
readConfig(config, "inputfileStarCamera", starCameraName, Config::MUSTSET, "", "rotation from body frame to CRF");
readConfig(config, "inputfileAccelerometer", accName, Config::OPTIONAL, "", "non-gravitational forces in satellite reference frame");
readConfig(config, "forces", forces, Config::MUSTSET, "", "");
if(readConfigSequence(config, "estimatedParameters", Config::OPTIONAL, "", "satellite parameters e.g. from orbit fit"))
{
renameDeprecatedConfig(config, "parameter", "parametrizationAcceleration", date2time(2020, 6, 3));
readConfig(config, "parametrizationAcceleration", parameterAcceleration, Config::MUSTSET, "", "orbit force parameters");
readConfig(config, "inputfileParameter", fileNameSolution, Config::MUSTSET, "", "estimated orbit force parameters");
endSequence(config);
}
readConfig(config, "earthRotation", earthRotation, Config::MUSTSET, "", "");
readConfig(config, "ephemerides", ephemerides, Config::OPTIONAL, "jpl", "");
readConfig(config, "gradientfield", gradientfield, Config::MUSTSET, "", "low order field to estimate the change of the gravity by position adjustement");
readConfig(config, "integrationDegree", integrationDegree, Config::DEFAULT, "7", "integration of forces by polynomial approximation of degree n");
if(readConfigSequence(config, "useEnke", Config::OPTIONAL, "1", "integrate differential forces to an elliptical reference trajectory"))
{
readConfig(config, "GM", GM, Config::DEFAULT, STRING_DEFAULT_GM, "geocentric gravitational constant used for elliptical reference orbit");
endSequence(config);
}
if(isCreateSchema(config)) return;
if(integrationDegree%2 == 0)
throw(Exception("polynomial degree for integration must be odd."));
if(!fileNameSatellite.empty()) readFileSatelliteModel(fileNameSatellite, satellite);
// open and test instrument files
// ------------------------------
orbitFile.open(orbitName);
starCameraFile.open(starCameraName);
accelerometerFile.open(accName);
InstrumentFile::checkArcCount({orbitFile, starCameraFile, accelerometerFile});
// init calibration parameters
if(parameterAcceleration)
{
readFileMatrix(fileNameSolution, parameter);
if(parameterAcceleration->parameterCount() > parameter.rows())
throw(Exception("parameter and inputfileParameter must agree"));
}
// init integration
// ----------------
coeff_g.resize (integrationDegree);
coeff_tg.resize(integrationDegree);
for(UInt idx=0; idx<coeff_g.size(); idx++)
{
// polynomial matrix
Matrix W(integrationDegree+1, integrationDegree+1);
for(UInt i=0; i<W.columns(); i++)
{
W(i,0) = 1.;
for(UInt n=1; n<W.rows(); n++)
W(i,n) = (Double(i)-idx) * W(i,n-1);
}
inverse(W);
coeff_g.at(idx) = Vector(W.rows());
coeff_tg.at(idx) = Vector(W.rows());
for(UInt i=0; i<W.rows(); i++)
for(UInt n=0; n<W.columns(); n++)
{
coeff_g.at(idx)(i) += 1./(n+1.) * W(n,i);
coeff_tg.at(idx)(i) += 1./(n+2.) * W(n,i);
}
}
// compute arcs
// ------------
logStatus<<"integrate arcs"<<Log::endl;
maxPosDiff = 0;
std::vector<VariationalEquationArc> arcs(orbitFile.arcCount());
Parallel::forEach(arcs, [this](UInt arcNo) {return computeArc(arcNo);}, comm);
Parallel::reduceMax(maxPosDiff, 0, comm);
logInfo<<" max diff (orbit-reference orbit) "<<maxPosDiff<<" m"<<Log::endl;
// write results
// -------------
if(Parallel::isMaster(comm))
{
logStatus<<"write variational equation to file <"<<fileNameOutVariational<<">"<<Log::endl;
writeFileVariationalEquation(fileNameOutVariational, satellite, arcs);
}
if(Parallel::isMaster(comm) && !fileNameOutOrbit.empty())
{
logStatus<<"write orbit to file <"<<fileNameOutOrbit<<">"<<Log::endl;
std::list<Arc> arcList;
for(UInt arcNo=0; arcNo<arcs.size(); arcNo++)
arcList.push_back(arcs.at(arcNo).orbitArc());
InstrumentFile::write(fileNameOutOrbit, arcList);
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
VariationalEquationArc PreprocessingVariationalEquation::computeArc(UInt arcNo)
{
try
{
OrbitArc orbit = orbitFile.readArc(arcNo);
StarCameraArc starCamera = starCameraFile.readArc(arcNo);
AccelerometerArc accelerometer = accelerometerFile.readArc(arcNo);
Arc::checkSynchronized({orbit, starCamera, accelerometer});
std::vector<Time> times = orbit.times();
const UInt epochCount = orbit.size();
const Double T = (times.back()-times.at(0)).seconds();
const Double deltaT = T/(epochCount-1);
// computeEarthRotation
std::vector<Rotary3d> rotEarth(times.size());
for(UInt k=0; k<times.size(); k++)
rotEarth.at(k) = earthRotation->rotaryMatrix(times.at(k));
// computeGravityGradient
std::vector<Tensor3d> tensor(orbit.size());
for(UInt i=0; i<orbit.size(); i++)
{
Vector3d posEarth = rotEarth.at(i).rotate(orbit.at(i).position);
tensor.at(i) = rotEarth.at(i).inverseRotate(gradientfield->gravityGradient(orbit.at(i).time, posEarth));
}
// computeForce
std::vector<Vector3d> force(orbit.size());
for(UInt k=0; k<orbit.size(); k++)
{
// forces are returned in TRF, rotate to CRF
force.at(k) = rotEarth.at(k).inverseRotate(forces->acceleration(satellite, orbit.at(k).time, orbit.at(k).position, orbit.at(k).velocity,
starCamera.at(k).rotary, rotEarth.at(k), earthRotation, ephemerides));
// accelerometer
if(accelerometer.size())
force.at(k) += starCamera.at(k).rotary.rotate(accelerometer.at(k).acceleration);
}
if(parameterAcceleration)
{
parameterAcceleration->setIntervalArc(times.at(0), times.back()+seconds2time(deltaT));
const UInt countA = parameterAcceleration->parameterCount();
const UInt countB = parameterAcceleration->parameterCountArc();
for(UInt k=0; k<times.size(); k++)
{
Matrix A(3, countA);
Matrix B(3, countB);
parameterAcceleration->compute(satellite, times.at(k), orbit.at(k).position, orbit.at(k).velocity,
starCamera.at(k).rotary, rotEarth.at(k), ephemerides, A, B);
Vector g2(3);
if(countA) matMult(1., A, parameter.row(0, countA), g2);
if(countB) matMult(1., B, parameter.row(arcNo*(countB+6)+countA, countB), g2);
force.at(k) += rotEarth.at(k).inverseRotate(Vector3d(g2(0), g2(1), g2(2)));
}
}
// sort into vector
Vector g(3*epochCount);
for(UInt k=0; k<epochCount; k++)
{
g(3*k+0) = force.at(k).x();
g(3*k+1) = force.at(k).y();
g(3*k+2) = force.at(k).z();
}
// =============================================
// approx position
// ---------------
Vector posApprox(3*epochCount);
for(UInt i=0; i<epochCount; i++)
{
posApprox(3*i+0) = orbit.at(i).position.x();
posApprox(3*i+1) = orbit.at(i).position.y();
posApprox(3*i+2) = orbit.at(i).position.z();
}
// Elliptical reference orbit
// --------------------------
Vector posRef(3*epochCount);
Vector velRef(3*epochCount);
if(GM>0) // useEnke
{
// Collect orbit epochs for mean orbit estimation. Try to use 100 evenly
// spaced epochs along the arc, or all of the epochs if the arc is shorter.
UInt stagger = (orbit.size() < 100) ? 1 : orbit.size()/100;
OrbitArc sparseOrbit;
for(UInt k=0; k<orbit.size(); k += stagger)
sparseOrbit.push_back(orbit.at(k));
// Osculating orbit at first epoch
Vector3d velocity = sparseOrbit.at(0).velocity;
if(velocity.r()==0)
velocity = (1/(sparseOrbit.at(1).time-sparseOrbit.at(0).time).seconds()) * (sparseOrbit.at(1).position-sparseOrbit.at(0).position);
// We use an equinoctial orbit because Kepler is not accurate enough
Equinoctial referenceOrbit(sparseOrbit.at(0).time, sparseOrbit.at(0).position, velocity, GM);
UInt iter = 0;
UInt maxIter = 100;
Vector dx;
do
{
// We will fit to positions only
Vector obs(3*sparseOrbit.size());
for(UInt i=0; i<sparseOrbit.size(); i++)
{
const Vector3d dpos = sparseOrbit.at(i).position - referenceOrbit.position(sparseOrbit.at(i).time);
obs(3*i+0) = dpos.x();
obs(3*i+1) = dpos.y();
obs(3*i+2) = dpos.z();
}
Matrix A(3*sparseOrbit.size(), 6);
for(UInt i=0; i<sparseOrbit.size(); i++)
copy(referenceOrbit.stateTransitionMatrix(sparseOrbit.at(i).time).row(0,3), A.row(3*i,3));
dx = leastSquares(A, obs);
referenceOrbit.a += dx(0);
referenceOrbit.h += dx(1);
referenceOrbit.k += dx(2);
referenceOrbit.p += dx(3);
referenceOrbit.q += dx(4);
referenceOrbit.l0 += dx(5);
}
while((++iter < maxIter) && (maxabs(dx) > 1e-9));
if(iter == maxIter)
logWarning<<"no convergence in equinoctial fit"<< Log::endl;
for(UInt i=0; i<epochCount; i++)
{
OrbitEpoch epoch;
referenceOrbit.orbit(times.at(i), epoch.position, epoch.velocity, epoch.acceleration);
// acceleration reduced by reference acceleration
g(3*i+0) -= epoch.acceleration.x();
g(3*i+1) -= epoch.acceleration.y();
g(3*i+2) -= epoch.acceleration.z();
// Observed position and velocity
posRef(3*i+0) = epoch.position.x();
posRef(3*i+1) = epoch.position.y();
posRef(3*i+2) = epoch.position.z();
velRef(3*i+0) = epoch.velocity.x();
velRef(3*i+1) = epoch.velocity.y();
velRef(3*i+2) = epoch.velocity.z();
}
} // if(useEnke)
// =============================================
// State matrix: position partial derivatives with respect to boundary values
// --------------------------------------------------------------------------
Matrix PosState(3*epochCount, 6);
for(UInt i=0; i<epochCount; i++)
{
PosState(3*i+0, 0) = PosState(3*i+1, 1) = PosState(3*i+2, 2) = 1.; // d(pos)/d(pos0)
PosState(3*i+0, 3) = PosState(3*i+1, 4) = PosState(3*i+2, 5) = i*deltaT/T; //(times.at(i)-times.at(0)).seconds()/T; // d(pos)/d(vel0)
}
// Position
// --------
Matrix pos0 = integrate2Position(deltaT, g);
Vector state = leastSquares(Matrix(PosState), posApprox-posRef-pos0);
matMult(1, PosState, state, pos0);
pos0 = solve(deltaT, tensor, pos0 - (posApprox-posRef)) + posApprox;
// =============================================
// State with indirect effect
// --------------------------
PosState = solve(deltaT, tensor, PosState);
Matrix AccState(3*epochCount, 6);
for(UInt i=0; i<epochCount; i++)
matMult(1., tensor.at(i).matrix(), PosState.row(3*i,3), AccState.row(3*i,3));
Matrix VelState(3*epochCount, 6);
for(UInt i=0; i<epochCount; i++)
{
VelState(3*i+0, 3) = VelState(3*i+1, 4) = VelState(3*i+2, 5) = 1/T;
}
// indirect effect
axpy(1., integrate2Velocity(deltaT, AccState), VelState);
// =============================================
// Acceleration
// ------------
Matrix acc0 = g;
Matrix posDelta = pos0 - posApprox;
for(UInt i=0; i<epochCount; i++)
matMult(1., tensor.at(i).matrix(), posDelta.row(3*i,3), acc0.row(3*i,3));
// Velocity
// --------
Matrix vel0 = integrate2Velocity(deltaT, acc0);
for(UInt i=0; i<epochCount; i++)
for(UInt j=0; j<vel0.columns(); j++)
axpy(1/T, state.row(3,3), vel0.slice(3*i,j,3,1));
vel0 += velRef; // velRef is either 0, or when useEnke, the velocity from equinoctial equations.
// fit to reference orbit
// ----------------------
{
Vector state = leastSquares(Matrix(PosState), posApprox-pos0);
matMult(1, PosState, state, pos0);
matMult(1, VelState, state, vel0);
}
// =============================================
VariationalEquationArc arc;
arc.times = times;
arc.pos0 = pos0;
arc.vel0 = vel0;
arc.PosState = PosState;
arc.VelState = VelState;
arc.rotEarth = rotEarth; // CRF -> TRF
arc.rotSat.resize(orbit.size());
for(UInt k=0; k<orbit.size(); k++)
arc.rotSat.at(k) = starCamera.at(k).rotary; // Sat -> CRF
// for statistics
maxPosDiff = std::max(maxPosDiff, maxabs(arc.pos0-posApprox));
return arc;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Matrix PreprocessingVariationalEquation::integrate2Position(Double deltaT, const_MatrixSliceRef g) const
{
try
{
const UInt epochCount = g.rows()/3;
Matrix result(g.rows(), g.columns()); // \int_0^t (t-t') f(t') dt'
UInt idx = 0;
UInt evalPoint = 0;
Matrix int_g(3, g.columns()); // \int_0^t f(t') dt'
Matrix int_tg(3, g.columns()); // \int_0^t t'f(t') dt'
for(UInt i=0; i<epochCount-1; i++)
{
Matrix tmp(3, g.columns());
for(UInt k=0; k<coeff_g.at(idx).rows(); k++)
axpy(deltaT * coeff_g.at(idx)(k), g.row(3*(i+k-evalPoint),3), tmp);
for(UInt k=0; k<coeff_tg.at(idx).rows(); k++)
axpy(deltaT*deltaT * coeff_tg.at(idx)(k), g.row(3*(i+k-evalPoint),3), int_tg);
axpy(i*deltaT, tmp, int_tg);
int_g += tmp;
// select polynomial coefficients
if(i<integrationDegree/2)
idx++, evalPoint++;
if(i>=epochCount-1-integrationDegree/2-1)
idx++, evalPoint++;
axpy((i+1)*deltaT, int_g, result.row(3*(i+1),3)); // t * \int_0^t f(t') dt'
axpy(-1., int_tg, result.row(3*(i+1),3)); // -1 * \int_0^t t'f(t') dt'
} // for(i)
return result;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Matrix PreprocessingVariationalEquation::integrate2Velocity(Double deltaT, const_MatrixSliceRef g) const
{
try
{
const UInt epochCount = g.rows()/3;
Matrix result(g.rows(), g.columns());
UInt idx = 0;
UInt evalPoint = 0;
for(UInt i=0; i<epochCount-1; i++)
{
copy(result.row(3*i,3), result.row(3*(i+1),3));
for(UInt k=0; k<coeff_g.at(idx).rows(); k++)
axpy(deltaT*coeff_g.at(idx)(k), g.row(3*(i+k-evalPoint),3), result.row(3*(i+1),3));
// select polynomial coefficients
if(i<integrationDegree/2)
idx++, evalPoint++;
if(i>=epochCount-1-integrationDegree/2-1)
idx++, evalPoint++;
} // for(i)
return result;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
// indirect effect (dependency of gravity due to position change)
// x = (I-integrate(T))^-1 l
// with the iterative solver BiCGSTAB
// BiCGSTAB (http://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method)
Matrix PreprocessingVariationalEquation::solve(Double deltaT, const std::vector<Tensor3d> &tensor, const_MatrixSliceRef l) const
{
try
{
// Approximate solution
// --------------------
Matrix x = approxInverse(deltaT, tensor, l);
Matrix delta;
for(UInt iter2=0; iter2<50; iter2++)
{
Matrix r = l - refine(deltaT, tensor, x);
Matrix r0 = r;
const UInt rhsCount = x.columns();
Vector rho(rhsCount), alpha(rhsCount), omega(rhsCount);
for(UInt i=0; i<rhsCount; i++)
rho(i) = alpha(i) = omega(i) = 1.;
Matrix v(x.rows(), rhsCount);
Matrix p(x.rows(), rhsCount);
for(UInt iter=0; iter<1; iter++)
{
for(UInt i=0; i<rhsCount; i++)
{
Double rhoOld = rho(i);
rho(i) = inner(r0.column(i), r.column(i));
Double beta = (rho(i)/rhoOld)*(alpha(i)/omega(i));
axpy(-omega(i), v.column(i), p.column(i));
p.column(i) *= beta;
axpy(1., r.column(i), p.column(i));
}
Matrix pHat = approxInverse(deltaT, tensor, p);
v = refine(deltaT, tensor, pHat);
for(UInt i=0; i<rhsCount; i++)
{
alpha(i) = rho(i)/inner(r0.column(i), v.column(i));
axpy(-alpha(i), v.column(i), r.column(i));
}
Matrix sHat = approxInverse(deltaT, tensor, r);
Matrix t = refine(deltaT, tensor, sHat);
Matrix xOld = x;
for(UInt i=0; i<rhsCount; i++)
{
omega(i) = inner(t.column(i), r.column(i))/inner(t.column(i), t.column(i));
axpy( alpha(i), pHat.column(i), x.column(i));
axpy( omega(i), sHat.column(i), x.column(i));
axpy(-omega(i), t.column(i), r.column(i));
}
delta = x-xOld;
if(maxabs(delta) < 1e-7)
break;
} // for(iter)
if(maxabs(delta) < 1e-7)
break;
} // for(iter2)
return x;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
// y = (I-K*T)x = x - integrate(T*x)
Matrix PreprocessingVariationalEquation::refine(Double deltaT, const std::vector<Tensor3d> &tensor, const_MatrixSliceRef x) const
{
try
{
Matrix y = x;
Matrix Tx(x.rows(), x.columns());
for(UInt i=0; i<tensor.size(); i++)
matMult(1., tensor.at(i).matrix(), x.row(3*i,3), Tx.row(3*i,3));
y -= integrate2Position(deltaT, Tx);
return y;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
// y = (I-K*T)^-1 x
Matrix PreprocessingVariationalEquation::approxInverse(Double deltaT, const std::vector<Tensor3d> &tensor, const_MatrixSliceRef x) const
{
try
{
Matrix y = x;
Matrix tmp = tensor.at(0).matrix() * y.row(0,3);
Matrix Ty = 0.5*deltaT*deltaT * tmp;
Matrix tTy = -deltaT*deltaT/6 * tmp;
for(UInt i=1; i<tensor.size(); i++)
{
axpy(i, Ty, y.row(3*i,3));
axpy(1, tTy, y.row(3*i,3));
Matrix K(3,3);
K(0,0) = K(1,1) = K(2,2) = 1.;
axpy(-1./6.*deltaT*deltaT, tensor.at(i).matrix(), K);
solveInPlace(K, y.row(3*i,3));
const Matrix tmp = tensor.at(i).matrix() * y.row(3*i,3);
axpy( deltaT*deltaT, tmp, Ty);
axpy(-deltaT*deltaT*i, tmp, tTy);
}
return y;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|