1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
/***********************************************/
/**
* @file preprocessingVariationalEquationOrbitFit.cpp
*
* @brief Fit variational equations to orbit observations.
*
* @author Torsten Mayer-Guerr
* @date 2012-05-30
*
*/
/***********************************************/
// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program fits an \configFile{inputfileVariational}{variationalEquation} to an observed \configFile{inputfileOrbit}{instrument} by estimating parameters
in a least squares adjustment. Additional to the initial satellite state for each arc, these parameters can be
\configClass{parametrizationGravity}{parametrizationGravityType}, satellite \configClass{parametrizationAcceleration}{parametrizationAccelerationType}
and stochastic pulses (velocity jumps) at given times, \configClass{stochasticPulse}{timeSeriesType}. The estimated parameters can be stored with
\configFile{outputfileSolution}{matrix} and an extra file with the parameter names is created. The fitted orbit is written
as new reference in \configFile{outputfileVariational}{variationalEquation} and additionally in \configFile{outputfileOrbit}{instrument}.
The observed orbit positions (\configFile{inputfileOrbit}{instrument}) together with the epoch wise covariance matrix
(\configFile{inputfileCovariancePodEpoch}{instrument}) must be splitted in the same arcs as the variational equations but not
necessarily uniform distributed (use irregularData in \program{InstrumentSynchronize}). An iterative downweighting of
outliers is performed by M-Huber method.
The observation equations (parameter sensitity matrix) are computed by integration of the variational equations
(\configFile{inputfileVariational}{variationalEquation}) using a polynomial with \config{integrationDegree} and interpolated to the
observation epochs using a polynomial with \config{interpolationDegree}.
All parameters used here must be reestimated in the full least squares adjustment
for the gravity field determination to get a solution which is not biased towards the reference field.
The solution of additional estimations are relative (deltas) as the parameters are already used as Taylor point
in the reference orbit.
See also \program{PreprocessingVariationalEquation}.
)";
/***********************************************/
#include "programs/program.h"
#include "base/polynomial.h"
#include "files/fileMatrix.h"
#include "files/fileInstrument.h"
#include "files/fileVariationalEquation.h"
#include "files/fileParameterName.h"
#include "classes/ephemerides/ephemerides.h"
#include "classes/parametrizationGravity/parametrizationGravity.h"
#include "classes/parametrizationAcceleration/parametrizationAcceleration.h"
#include "classes/timeSeries/timeSeries.h"
#include "misc/varianceComponentEstimation.h"
#include "misc/observation/variationalEquationFromFile.h"
/***** CLASS ***********************************/
/** @brief Fit variational equations to orbit observations
* @ingroup programsGroup */
class PreprocessingVariationalEquationOrbitFit
{
public:
VariationalEquationFromFile variationalEquationFromFile;
InstrumentFile podFile;
InstrumentFile covPodEpochFile;
EphemeridesPtr ephemerides;
ParametrizationAccelerationPtr parameterAcceleration;
ParametrizationGravityPtr parameterGravity;
UInt interpolationDegree;
UInt arcCount;
// normal equations
// ----------------
Matrix N; // =A'PA, Normal matrix
Vector n; // =A'Pl, right hand side
Double lPl; // =l'Pl, weighted norm of the observations
UInt obsCount; // number of observations
UInt outlierCount;
Vector x;
Double sigma0;
void run(Config &config, Parallel::CommunicatorPtr comm);
void buildNormals(UInt arcNo);
};
GROOPS_REGISTER_PROGRAM(PreprocessingVariationalEquationOrbitFit, PARALLEL, "fit variational equations to orbit observations", Preprocessing, VariationalEquation)
/***********************************************/
/***********************************************/
void PreprocessingVariationalEquationOrbitFit::run(Config &config, Parallel::CommunicatorPtr comm)
{
try
{
FileName fileNameOutVariational, fileNameOutOrbit, fileNameOutSolution;
FileName fileNameInVariational;
FileName podName, covPodEpochName;
UInt integrationDegree;
UInt iterCount;
std::vector<Time> stochasticPulse;
TimeSeriesPtr stochasticPulsePtr;
renameDeprecatedConfig(config, "representation", "parametrizationGravity", date2time(2020, 6, 3));
renameDeprecatedConfig(config, "parameter", "parametrizationAcceleration", date2time(2020, 6, 3));
readConfig(config, "outputfileVariational", fileNameOutVariational, Config::MUSTSET, "", "approximate position and integrated state matrix");
readConfig(config, "outputfileOrbit", fileNameOutOrbit, Config::OPTIONAL, "", "integrated orbit");
readConfig(config, "outputfileSolution", fileNameOutSolution, Config::OPTIONAL, "", "estimated calibration and state parameters");
readConfig(config, "inputfileVariational", fileNameInVariational, Config::MUSTSET, "", "approximate position and integrated state matrix");
readConfig(config, "inputfileOrbit", podName, Config::MUSTSET, "", "kinematic positions of satellite as observations");
readConfig(config, "inputfileCovariancePodEpoch", covPodEpochName, Config::OPTIONAL, "", "3x3 epoch wise covariances");
readConfig(config, "ephemerides", ephemerides, Config::OPTIONAL, "jpl", "may be needed by parametrizationAcceleration");
readConfig(config, "parametrizationGravity", parameterGravity, Config::DEFAULT, "", "gravity field parametrization");
readConfig(config, "parametrizationAcceleration", parameterAcceleration, Config::DEFAULT, "", "orbit force parameters");
readConfig(config, "stochasticPulse", stochasticPulsePtr, Config::DEFAULT, "", "");
readConfig(config, "integrationDegree", integrationDegree, Config::DEFAULT, "7", "integration of forces by polynomial approximation of degree n");
readConfig(config, "interpolationDegree", interpolationDegree, Config::DEFAULT, "7", "orbit interpolation by polynomial approximation of degree n");
readConfig(config, "iterationCount", iterCount, Config::DEFAULT, "10", "for the estimation of calibration parameter and error PSD");
if(isCreateSchema(config)) return;
if(integrationDegree%2 == 0)
throw(Exception("polnomial degree for integration must be odd."));
if(stochasticPulsePtr)
stochasticPulse = stochasticPulsePtr->times();
// init
// ----
podFile.open(podName);
covPodEpochFile.open(covPodEpochName);
InstrumentFile::checkArcCount({podFile, covPodEpochFile});
variationalEquationFromFile.open(fileNameInVariational, parameterGravity, parameterAcceleration, stochasticPulse, ephemerides, integrationDegree);
// =============================================
x = Vector(variationalEquationFromFile.parameterCount());
sigma0 = 1;
for(UInt iter=0; iter<iterCount; iter++)
{
// build normals
// -------------
logStatus<<"accumulate normal equations"<<Log::endl;
N = Matrix(variationalEquationFromFile.parameterCount(), Matrix::SYMMETRIC);
n = Vector(variationalEquationFromFile.parameterCount());
lPl = 0;
obsCount = 0;
outlierCount = 0;
Parallel::forEach(podFile.arcCount(), [this](UInt arcNo) {buildNormals(arcNo);}, comm);
Parallel::reduceSum(N, 0, comm);
Parallel::reduceSum(n, 0, comm);
Parallel::reduceSum(lPl, 0, comm);
Parallel::reduceSum(obsCount, 0, comm);
Parallel::reduceSum(outlierCount, 0, comm);
// Estimate parameters
// -------------------
if(Parallel::isMaster(comm))
{
// Regularize unused parameters
for(UInt i=0; i<N.rows(); i++)
if(N(i,i) == 0)
N(i,i) = 1.0;
logStatus<<"solve system of normal equations"<<Log::endl;
x = solve(N,n);
sigma0 = Vce::standardDeviation(lPl-inner(n,x), obsCount-x.rows(), 2.5/*huber*/, 1./*huberPower*/);
logInfo<<" aposteriori sigma: "<<sigma0<<Log::endl;
logInfo<<" outlier "<<outlierCount<<" of "<<obsCount<<" ("<<100.*outlierCount/obsCount<<"%)"<<Log::endl;
}
Parallel::broadCast(outlierCount, 0, comm);
if((iter>0) && (outlierCount==0))
break;
logInfo<<" parameter count = "<<variationalEquationFromFile.parameterCount()<<Log::endl;
Parallel::broadCast(x, 0, comm);
Parallel::broadCast(sigma0, 0, comm);
} // for(iter)
if(Parallel::isMaster(comm) && !fileNameOutSolution.empty())
{
logStatus<<"write solution to <"<<fileNameOutSolution<<">"<<Log::endl;
writeFileMatrix(fileNameOutSolution, x);
std::vector<ParameterName> parameterName;
variationalEquationFromFile.parameterName(parameterName);
writeFileParameterName(fileNameOutSolution.replaceFullExtension(".parameterName.txt"), parameterName);
}
// =============================================================================
// Improve orbits with estimated parameters
// ----------------------------------------
std::vector<VariationalEquationArc> arcs(variationalEquationFromFile.arcCount());
Parallel::forEach(arcs, [this](UInt arcNo) {return variationalEquationFromFile.refineVariationalEquationArc(arcNo, x);}, comm);
// =============================================================================
if(Parallel::isMaster(comm) && !fileNameOutVariational.empty())
{
logStatus<<"write variational equation to file <"<<fileNameOutVariational<<">"<<Log::endl;
writeFileVariationalEquation(fileNameOutVariational, variationalEquationFromFile.satellite(), arcs);
}
// =============================================
if(Parallel::isMaster(comm) && !fileNameOutOrbit.empty())
{
logStatus<<"write orbit to file <"<<fileNameOutOrbit<<">"<<Log::endl;
std::list<Arc> arcList;
for(UInt arcNo=0; arcNo<arcs.size(); arcNo++)
arcList.push_back( arcs.at(arcNo).orbitArc() );
InstrumentFile::write(fileNameOutOrbit, arcList);
}
// =============================================
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void PreprocessingVariationalEquationOrbitFit::buildNormals(UInt arcNo)
{
try
{
OrbitArc pod = podFile.readArc(arcNo);
if(pod.size() == 0)
return;
Vector l(3*pod.size());
for(UInt k=0; k<pod.size(); k++)
{
l(3*k+0) = pod.at(k).position.x();
l(3*k+1) = pod.at(k).position.y();
l(3*k+2) = pod.at(k).position.z();
}
std::vector<Time> timePod = pod.times();
VariationalEquationFromFile::ObservationEquation eqn = variationalEquationFromFile.integrateArc(timePod.front(), timePod.back(), TRUE/*position*/, FALSE/*velocity*/);
Polynomial polynomial(eqn.times, interpolationDegree);
l -= polynomial.interpolate(timePod, eqn.pos0, 3); // reference orbit
Matrix A = polynomial.interpolate(timePod, eqn.PosDesign, 3);
// decorrelation
Covariance3dArc covPod = covPodEpochFile.readArc(arcNo);
Arc::checkSynchronized({pod, covPod});
for(UInt i=0; i<covPod.size(); i++)
{
Matrix W = covPod.at(i).covariance.matrix();
W.setType(Matrix::SYMMETRIC);
cholesky(W);
triangularSolve(1., W.trans(), l.row(3*i,3));
triangularSolve(1., W.trans(), A.row(3*i,3));
}
// downweight outliers
if(quadsum(x))
{
const Double huber = 2.5;
Vector e = l;
matMult(-1, A, x, e);
for(UInt k=0; k<pod.size(); k++)
{
Double s = sqrt(quadsum(e.row(3*k,3))/3);
if(s>huber*sigma0)
{
l.row(3*k,3) *= huber*sigma0/s;
A.row(3*k,3) *= huber*sigma0/s;
outlierCount += 3;
}
}
}
lPl += quadsum(l);
obsCount += l.rows();
rankKUpdate(1., A, N);
matMult(1., A.trans(), l, n);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|