File: simulateOrbit.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (167 lines) | stat: -rw-r--r-- 7,278 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/***********************************************/
/**
* @file simulateOrbit.cpp
*
* @brief Pure dynamical orbit integration.
*
* @author Matthias Ellmer
* @date 2004-09-12
*/
/***********************************************/

// Latex documentation
#define DOCSTRING docstring
static const char *docstring = R"(
This program integrates an \file{orbit}{instrument} from a given force function (dynamic orbit).
The force functions are given by \configClass{forces}{forcesType}.
For computation of non-conservative forces a \file{satelliteModel}{satelliteModel} is needed.
The integration method must be selected with \configClass{propagator}{orbitPropagatorType}.
Because the orbit data are calculated in the celestial reference frame (CRF) you need
\configClass{earthRotation}{earthRotationType} to transform the force function
from the terrestrial reference frame (TRF).
The integration start and end time, as well as the sampling, are derived from
the \config{timeSeries} option. It is possible to integrate the arc in \config{reverse},
where the initial conditions are assumed to be met at the end time of the \config{timeSeries}.
)";

/***********************************************/

#include "programs/program.h"
#include "base/kepler.h"
#include "files/fileInstrument.h"
#include "files/fileSatelliteModel.h"
#include "classes/timeSeries/timeSeries.h"
#include "classes/earthRotation/earthRotation.h"
#include "classes/ephemerides/ephemerides.h"
#include "classes/forces/forces.h"
#include "classes/orbitPropagator/orbitPropagator.h"

/***** CLASS ***********************************/

/** @brief Pure dynamical orbit integration.
 * @ingroup programsGroup */
class SimulateOrbit
{
public:
  void run(Config &config, Parallel::CommunicatorPtr comm);
};

GROOPS_REGISTER_PROGRAM(SimulateOrbit, SINGLEPROCESS, "pure dynamical orbit integration", Simulation, Orbit, Instrument)

/***********************************************/

void SimulateOrbit::run(Config &config, Parallel::CommunicatorPtr /*comm*/)
{
  try
  {
    FileName             fileNameOrbit;
    FileName             fileNameSatellite;
    FileName             fileNameStart;
    TimeSeriesPtr        timeSeries;
    OrbitPropagatorPtr   orbitPropagator;
    OrbitEpoch           startEpoch;
    EarthRotationPtr     earthRotation;
    EphemeridesPtr       ephemerides;
    ForcesPtr            forces;
    Bool                 reverse;
    Double               margin;

    renameDeprecatedConfig(config, "satelliteModel", "inputfileSatelliteModel", date2time(2020, 8, 19));

    readConfig(config, "outputfileOrbit",         fileNameOrbit,     Config::MUSTSET,   "",   "orbit file to be written.");
    readConfig(config, "inputfileSatelliteModel", fileNameSatellite, Config::OPTIONAL, "{groopsDataDir}/satelliteModel/", "satellite macro model");
    readConfig(config, "timeSeries",              timeSeries,        Config::MUSTSET,   "",   "time points for simulated orbit epochs.");

    std::string choice;
    readConfigChoice(config, "integrationConstants", choice, Config::MUSTSET, "", "");
    if(readConfigChoiceElement(config, "kepler", choice, ""))
    {
      Double GM, a, e;
      Angle  i, Omega, omega, M;
      readConfig(config, "majorAxis",         a,     Config::MUSTSET, "", "[m]");
      readConfig(config, "eccentricity",      e,     Config::MUSTSET, "", "[-]");
      readConfig(config, "inclination",       i,     Config::MUSTSET, "", "[degree]");
      readConfig(config, "ascendingNode",     Omega, Config::MUSTSET, "", "[degree]");
      readConfig(config, "argumentOfPerigee", omega, Config::MUSTSET, "", "[degree]");
      readConfig(config, "meanAnomaly",       M,     Config::MUSTSET, "", "[degree]");
      readConfig(config, "GM",                GM,    Config::DEFAULT,  STRING_DEFAULT_GM, "Geocentric gravitational constant");
      if(!isCreateSchema(config))
      {
        Kepler kepler(Time(), Omega, i, omega, a, e, M, GM);
        kepler.orbit(Time(), startEpoch.position, startEpoch.velocity);
      }
    }
    if(readConfigChoiceElement(config, "positionAndVelocity", choice, ""))
    {
      readConfig(config, "position0x", startEpoch.position.x(), Config::MUSTSET, "", "[m] in CRF");
      readConfig(config, "position0y", startEpoch.position.y(), Config::MUSTSET, "", "[m] in CRF");
      readConfig(config, "position0z", startEpoch.position.z(), Config::MUSTSET, "", "[m] in CRF");
      readConfig(config, "velocity0x", startEpoch.velocity.x(), Config::MUSTSET, "", "[m/s]");
      readConfig(config, "velocity0y", startEpoch.velocity.y(), Config::MUSTSET, "", "[m/s]");
      readConfig(config, "velocity0z", startEpoch.velocity.z(), Config::MUSTSET, "", "[m/s]");
    }
    if(readConfigChoiceElement(config, "file", choice, ""))
    {
      readConfig(config, "inputfileOrbit", fileNameStart, Config::MUSTSET,  "",     "only epoch at timeStart is used");
      readConfig(config, "margin",         margin,        Config::DEFAULT,  "1e-5", "[seconds] used when finding initial epoch in orbitFile");
    }
    endChoice(config);

    readConfig(config, "propagator",     orbitPropagator,   Config::MUSTSET,  "polynomial", "orbit propagation method.");
    readConfig(config, "earthRotation",  earthRotation,     Config::MUSTSET,  "",    "");
    readConfig(config, "ephemerides",    ephemerides,       Config::OPTIONAL, "jpl", "");
    readConfig(config, "forces",         forces,            Config::MUSTSET,  "",    "considered in orbit propagation.");
    readConfig(config, "reverse",        reverse,           Config::DEFAULT,  "0",   "start integration at last epoch in timeSeries, going backward in time.");
    if(isCreateSchema(config)) return;

    // Setup
    // -----
    SatelliteModelPtr satellite;
    if(!fileNameSatellite.empty())
      readFileSatelliteModel(fileNameSatellite, satellite);

    std::vector<Time> times = timeSeries->times();
    Time timeStart = times.front();
    Time sampling  = 1./(times.size()-1) * (times.back()-times.front());
    if(!isRegular(times))
      throw(Exception("Time intervals must be regularly spaced."));

    // Need to flip?
    if(reverse)
    {
      timeStart = times.back();
      sampling  = -sampling;
    }

    // read startEpoch from file
    // -------------------------
    if(!fileNameStart.empty())
    {
      OrbitArc orbit = InstrumentFile::read(fileNameStart);
      for(UInt i=0; i<orbit.size(); i++)
        if(std::fabs((orbit.at(i).time-timeStart).seconds())<margin)
          startEpoch = orbit.at(i);
      if(std::fabs((startEpoch.time-timeStart).seconds())>margin)
        throw (Exception("Requested start time "+timeStart.dateTimeStr()+" not present in file <"+fileNameStart.str()+">"));
    }

    // Integrate
    // ---------
    logStatus<<"integrating orbit"<<Log::endl;
    startEpoch.time = timeStart;
    OrbitArc orbit = orbitPropagator->integrateArc(startEpoch, sampling, times.size(), forces, satellite, earthRotation, ephemerides);
    if(reverse)
      orbit = OrbitPropagator::flip(orbit);

    // Save
    // ----
    logStatus<<"write orbit data to file <"<<fileNameOrbit<<">"<<Log::endl;
    InstrumentFile::write(fileNameOrbit, orbit);
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/