1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
|
// Copyright 2022 gRPC authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <atomic>
#include <cstdint>
#include <fstream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <string>
#include <thread>
#include <vector>
#include <openssl/sha.h>
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_join.h"
#include "absl/types/optional.h"
#include "absl/types/variant.h"
#include "src/core/ext/transport/chttp2/transport/huffsyms.h"
///////////////////////////////////////////////////////////////////////////////
// SHA256 hash handling
// We need strong uniqueness checks of some very long strings - so we hash
// them with SHA256 and compare.
struct Hash {
uint8_t bytes[SHA256_DIGEST_LENGTH];
bool operator==(const Hash& other) const {
return memcmp(bytes, other.bytes, SHA256_DIGEST_LENGTH) == 0;
}
bool operator<(const Hash& other) const {
return memcmp(bytes, other.bytes, SHA256_DIGEST_LENGTH) < 0;
}
};
// Given a vector of ints (T), return a Hash object with the sha256
template <typename T>
Hash HashVec(const std::vector<T>& v) {
Hash h;
SHA1(reinterpret_cast<const uint8_t*>(v.data()), v.size() * sizeof(T),
h.bytes);
return h;
}
///////////////////////////////////////////////////////////////////////////////
// BitQueue
// A utility that treats a sequence of bits like a queue
class BitQueue {
public:
BitQueue(unsigned mask, int len) : mask_(mask), len_(len) {}
BitQueue() : BitQueue(0, 0) {}
// Return the most significant bit (the front of the queue)
int Front() const { return (mask_ >> (len_ - 1)) & 1; }
// Pop one bit off the queue
void Pop() {
mask_ &= ~(1 << (len_ - 1));
len_--;
}
bool Empty() const { return len_ == 0; }
int length() const { return len_; }
unsigned mask() const { return mask_; }
// Text representation of the queue
std::string ToString() const {
return absl::StrCat(absl::Hex(mask_), "/", len_);
}
// Comparisons so that we can use BitQueue as a key in a std::map
bool operator<(const BitQueue& other) const {
return std::tie(mask_, len_) < std::tie(other.mask_, other.len_);
}
private:
// The bits
unsigned mask_;
// How many bits have we
int len_;
};
///////////////////////////////////////////////////////////////////////////////
// Symbol sets for the huffman tree
// A Sym is one symbol in the tree, and the bits that we need to read to decode
// that symbol. As we progress through decoding we remove bits from the symbol,
// but also condense the number of symbols we're considering.
struct Sym {
BitQueue bits;
int symbol;
bool operator<(const Sym& other) const {
return std::tie(bits, symbol) < std::tie(other.bits, other.symbol);
}
};
// A SymSet is all the symbols we're considering at some time
using SymSet = std::vector<Sym>;
// Debug utility to turn a SymSet into a string
std::string SymSetString(const SymSet& syms) {
std::vector<std::string> parts;
for (const Sym& sym : syms) {
parts.push_back(absl::StrCat(sym.symbol, ":", sym.bits.ToString()));
}
return absl::StrJoin(parts, ",");
}
// Initial SymSet - all the symbols [0..256] with their bits initialized from
// the http2 static huffman tree.
SymSet AllSyms() {
SymSet syms;
for (int i = 0; i < GRPC_CHTTP2_NUM_HUFFSYMS; i++) {
Sym sym;
sym.bits =
BitQueue(grpc_chttp2_huffsyms[i].bits, grpc_chttp2_huffsyms[i].length);
sym.symbol = i;
syms.push_back(sym);
}
return syms;
}
// What whould we do after reading a set of bits?
struct ReadActions {
// Emit these symbols
std::vector<int> emit;
// Number of bits that were consumed by the read
int consumed;
// Remaining SymSet that we need to consider on the next read action
SymSet remaining;
};
// Given a SymSet \a pending, read through the bits in \a index and determine
// what actions the decoder should take.
// allow_multiple controls the behavior should we get to the last bit in pending
// and hence know which symbol to emit, but we still have bits in index.
// We could either start decoding the next symbol (allow_multiple == true), or
// we could stop (allow_multiple == false).
// If allow_multiple is true we tend to emit more per read op, but generate
// bigger tables.
ReadActions ActionsFor(BitQueue index, SymSet pending, bool allow_multiple) {
std::vector<int> emit;
int len_start = index.length();
int len_consume = len_start;
// We read one bit in index at a time, so whilst we have bits...
while (!index.Empty()) {
SymSet next_pending;
// For each symbol in the pending set
for (auto sym : pending) {
// If the first bit doesn't match, then that symbol is not part of our
// remaining set.
if (sym.bits.Front() != index.Front()) continue;
sym.bits.Pop();
next_pending.push_back(sym);
}
switch (next_pending.size()) {
case 0:
// There should be no bit patterns that are undecodable.
abort();
case 1:
// If we have one symbol left, we need to have decoded all of it.
if (!next_pending[0].bits.Empty()) abort();
// Emit that symbol
emit.push_back(next_pending[0].symbol);
// Track how many bits we've read.
len_consume = index.length() - 1;
// If we allow multiple, reprime pending and continue, otherwise stop.
if (!allow_multiple) goto done;
pending = AllSyms();
break;
default:
pending = std::move(next_pending);
break;
}
// Finished with this bit, continue with next
index.Pop();
}
done:
return ReadActions{std::move(emit), len_start - len_consume, pending};
}
///////////////////////////////////////////////////////////////////////////////
// MatchCase
// A variant that helps us bunch together related ReadActions
// A Matched in a MatchCase indicates that we need to emit some number of
// symbols
struct Matched {
// number of symbols to emit
int emits;
bool operator<(const Matched& other) const { return emits < other.emits; }
};
// Unmatched says we didn't emit anything and we need to keep decoding
struct Unmatched {
SymSet syms;
bool operator<(const Unmatched& other) const { return syms < other.syms; }
};
// Emit end of stream
struct End {
bool operator<(End) const { return false; }
};
using MatchCase = absl::variant<Matched, Unmatched, End>;
///////////////////////////////////////////////////////////////////////////////
// Text & numeric helper functions
// Given a vector of lines, indent those lines by some number of indents
// (2 spaces) and return that.
std::vector<std::string> IndentLines(std::vector<std::string> lines,
int n = 1) {
std::string indent(2 * n, ' ');
for (auto& line : lines) {
line = absl::StrCat(indent, line);
}
return lines;
}
// Given a snake_case_name return a PascalCaseName
std::string ToPascalCase(const std::string& in) {
std::string out;
bool next_upper = true;
for (char c : in) {
if (c == '_') {
next_upper = true;
} else {
if (next_upper) {
out.push_back(toupper(c));
next_upper = false;
} else {
out.push_back(c);
}
}
}
return out;
}
// Return a uint type for some number of bits (16 -> uint16_t, 32 -> uint32_t)
std::string Uint(int bits) { return absl::StrCat("uint", bits, "_t"); }
// Given a maximum value, how many bits to store it in a uint
int TypeBitsForMax(int max) {
if (max <= 255) {
return 8;
} else if (max <= 65535) {
return 16;
} else {
return 32;
}
}
// Combine Uint & TypeBitsForMax to make for more concise code
std::string TypeForMax(int max) { return Uint(TypeBitsForMax(max)); }
// How many bits are needed to encode a value
int BitsForMaxValue(int x) {
int n = 0;
while (x >= (1 << n)) n++;
return n;
}
///////////////////////////////////////////////////////////////////////////////
// Codegen framework
// Some helpers so we don't need to generate all the code linearly, which helps
// organize this a little more nicely.
// An Item is our primitive for code generation, it can generate some lines
// that it would like to emit - those lines are fed to a parent item that might
// generate more lines or mutate the ones we return, and so on until codegen
// is complete.
class Item {
public:
virtual ~Item() = default;
virtual std::vector<std::string> ToLines() const = 0;
std::string ToString() const {
return absl::StrCat(absl::StrJoin(ToLines(), "\n"), "\n");
}
};
using ItemPtr = std::unique_ptr<Item>;
// An item that emits one line (the one given as an argument!)
class String : public Item {
public:
explicit String(std::string s) : s_(std::move(s)) {}
std::vector<std::string> ToLines() const override { return {s_}; }
private:
std::string s_;
};
// An item that returns a fixed copyright notice and autogenerated note text.
class Prelude final : public Item {
public:
std::vector<std::string> ToLines() const {
return {
"// Copyright 2022 gRPC authors.",
"//",
"// Licensed under the Apache License, Version 2.0 (the "
"\"License\");",
"// you may not use this file except in compliance with the License.",
"// You may obtain a copy of the License at",
"//",
"// http://www.apache.org/licenses/LICENSE-2.0",
"//",
"// Unless required by applicable law or agreed to in writing, "
"software",
"// distributed under the License is distributed on an \"AS IS\" "
"BASIS,",
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or "
"implied.",
"// See the License for the specific language governing permissions "
"and",
"// limitations under the License.",
"",
std::string(80, '/'),
"// This file is autogenerated: see "
"tools/codegen/core/gen_huffman_decompressor.cc",
""};
}
};
class Switch;
// A Sink is an Item that we can add more Items to.
// At codegen time it calls each of its children in turn and concatenates
// their results together.
class Sink : public Item {
public:
std::vector<std::string> ToLines() const override {
std::vector<std::string> lines;
for (const auto& item : children_) {
for (const auto& line : item->ToLines()) {
lines.push_back(line);
}
}
return lines;
}
// Add one string to our output.
void Add(std::string s) {
children_.push_back(std::make_unique<String>(std::move(s)));
}
// Add an item of type T to our output (constructing it with args).
template <typename T, typename... Args>
T* Add(Args&&... args) {
auto v = std::make_unique<T>(std::forward<Args>(args)...);
auto* r = v.get();
children_.push_back(std::move(v));
return r;
}
private:
std::vector<ItemPtr> children_;
};
// A sink that indents its lines by one indent (2 spaces)
class Indent : public Sink {
public:
std::vector<std::string> ToLines() const override {
return IndentLines(Sink::ToLines());
}
};
// A Sink that wraps its lines in a while block
class While : public Sink {
public:
explicit While(std::string cond) : cond_(std::move(cond)) {}
std::vector<std::string> ToLines() const override {
std::vector<std::string> lines;
lines.push_back(absl::StrCat("while (", cond_, ") {"));
for (const auto& line : IndentLines(Sink::ToLines())) {
lines.push_back(line);
}
lines.push_back("}");
return lines;
}
private:
std::string cond_;
};
// A switch statement.
// Cases can be modified by calling the Case member.
// Identical cases are collapsed into 'case X: case Y:' type blocks.
class Switch : public Item {
public:
// \a cond is the condition to place at the head of the switch statement.
// eg. "switch (cond) {".
explicit Switch(std::string cond) : cond_(std::move(cond)) {}
std::vector<std::string> ToLines() const override {
std::map<std::string, std::vector<std::string>> reverse_map;
for (const auto& kv : cases_) {
reverse_map[kv.second.ToString()].push_back(kv.first);
}
std::vector<std::string> lines;
lines.push_back(absl::StrCat("switch (", cond_, ") {"));
for (const auto& kv : reverse_map) {
for (const auto& cond : kv.second) {
lines.push_back(absl::StrCat(" case ", cond, ":"));
}
lines.back().append(" {");
for (const auto& case_line :
IndentLines(cases_.find(kv.second[0])->second.ToLines(), 2)) {
lines.push_back(case_line);
}
lines.push_back(" }");
}
lines.push_back("}");
return lines;
}
Sink* Case(std::string cond) { return &cases_[cond]; }
private:
std::string cond_;
std::map<std::string, Sink> cases_;
};
///////////////////////////////////////////////////////////////////////////////
// BuildCtx declaration
// Shared state for one code gen attempt
class TableBuilder;
class FunMaker;
class BuildCtx {
public:
BuildCtx(std::vector<int> max_bits_for_depth, Sink* global_fns,
Sink* global_decls, Sink* global_values, FunMaker* fun_maker)
: max_bits_for_depth_(std::move(max_bits_for_depth)),
global_fns_(global_fns),
global_decls_(global_decls),
global_values_(global_values),
fun_maker_(fun_maker) {}
void AddStep(SymSet start_syms, int num_bits, bool is_top, bool refill,
int depth, Sink* out);
void AddMatchBody(TableBuilder* table_builder, std::string index,
std::string ofs, const MatchCase& match_case, bool is_top,
bool refill, int depth, Sink* out);
void AddDone(SymSet start_syms, int num_bits, bool all_ones_so_far,
Sink* out);
int NewId() { return next_id_++; }
int MaxBitsForTop() const { return max_bits_for_depth_[0]; }
absl::optional<std::string> PreviousNameForArtifact(std::string proposed_name,
Hash hash) {
auto it = arrays_.find(hash);
if (it == arrays_.end()) {
arrays_.emplace(hash, proposed_name);
return absl::nullopt;
}
return it->second;
}
Sink* global_fns() const { return global_fns_; }
Sink* global_decls() const { return global_decls_; }
Sink* global_values() const { return global_values_; }
private:
const std::vector<int> max_bits_for_depth_;
std::map<Hash, std::string> arrays_;
int next_id_ = 1;
Sink* const global_fns_;
Sink* const global_decls_;
Sink* const global_values_;
FunMaker* const fun_maker_;
};
///////////////////////////////////////////////////////////////////////////////
// TableBuilder
// All our magic for building decode tables.
// We have three kinds of tables to generate:
// 1. op tables that translate a bit sequence to which decode case we should
// execute (and arguments to it), and
// 2. emit tables that translate an index given by the op table and tell us
// which symbols to emit
// Op table format
// Our opcodes contain an offset into an emit table, a number of bits consumed
// and an operation. The consumed bits are how many of the presented to us bits
// we actually took. The operation tells whether to emit some symbols (and how
// many) or to keep decoding.
// Optimization 1:
// op tables are essentially dense maps of bits -> opcode, and it turns out
// that *many* of the opcodes repeat across index bits for some of our tables
// so for those we split the table into two levels: first level indexes into
// a child table, and the child table contains the deduped opcodes.
// Optimization 2:
// Emit tables are a bit list of uint8_ts, and are indexed into by the op
// table (with an offset and length) - since many symbols get repeated, we try
// to overlay the symbols in the emit table to reduce the size.
// Optimization 3:
// We shard the table into some number of slices and use the top bits of the
// incoming lookup to select the shard. This tends to allow us to use smaller
// types to represent the table, saving on footprint.
class TableBuilder {
public:
explicit TableBuilder(BuildCtx* ctx) : ctx_(ctx), id_(ctx->NewId()) {}
// Append one case to the table
void Add(int match_case, std::vector<uint8_t> emit, int consumed_bits) {
elems_.push_back({match_case, std::move(emit), consumed_bits});
max_consumed_bits_ = std::max(max_consumed_bits_, consumed_bits);
max_match_case_ = std::max(max_match_case_, match_case);
}
// Build the table
void Build() const {
Choose()->Build(this, BitsForMaxValue(elems_.size() - 1));
}
// Generate a call to the accessor function for the emit table
std::string EmitAccessor(std::string index, std::string offset) {
return absl::StrCat("GetEmit", id_, "(", index, ", ", offset, ")");
}
// Generate a call to the accessor function for the op table
std::string OpAccessor(std::string index) {
return absl::StrCat("GetOp", id_, "(", index, ")");
}
int ConsumeBits() const { return BitsForMaxValue(max_consumed_bits_); }
int MatchBits() const { return BitsForMaxValue(max_match_case_); }
private:
// One element in the op table.
struct Elem {
int match_case;
std::vector<uint8_t> emit;
int consumed_bits;
};
// A nested slice is one slice of a table using two level lookup
// - i.e. we look at an outer table to get an index into the inner table,
// and then fetch the result from there.
struct NestedSlice {
std::vector<uint8_t> emit;
std::vector<uint64_t> inner;
std::vector<int> outer;
// Various sizes return number of bits to be generated
size_t InnerSize() const {
return inner.size() *
TypeBitsForMax(*std::max_element(inner.begin(), inner.end()));
}
size_t OuterSize() const {
return outer.size() *
TypeBitsForMax(*std::max_element(outer.begin(), outer.end()));
}
size_t EmitSize() const { return emit.size() * 8; }
};
// A slice is one part of a larger table.
struct Slice {
std::vector<uint8_t> emit;
std::vector<uint64_t> ops;
// Various sizes return number of bits to be generated
size_t OpsSize() const {
return ops.size() *
TypeBitsForMax(*std::max_element(ops.begin(), ops.end()));
}
size_t EmitSize() const { return emit.size() * 8; }
// Given a vector of symbols to emit, return the offset into the emit table
// that they're at (adding them to the emit table if necessary).
int OffsetOf(const std::vector<uint8_t>& x) {
if (x.empty()) return 0;
auto r = std::search(emit.begin(), emit.end(), x.begin(), x.end());
if (r == emit.end()) {
// look for a partial match @ end
for (size_t check_len = x.size() - 1; check_len > 0; check_len--) {
if (emit.size() < check_len) continue;
bool matches = true;
for (size_t i = 0; matches && i < check_len; i++) {
if (emit[emit.size() - check_len + i] != x[i]) matches = false;
}
if (matches) {
int offset = emit.size() - check_len;
for (size_t i = check_len; i < x.size(); i++) {
emit.push_back(x[i]);
}
return offset;
}
}
// add new
int result = emit.size();
for (auto v : x) emit.push_back(v);
return result;
}
return r - emit.begin();
}
// Convert this slice to a nested slice.
NestedSlice MakeNestedSlice() const {
NestedSlice result;
result.emit = emit;
std::map<uint64_t, int> op_to_inner;
for (auto v : ops) {
auto it = op_to_inner.find(v);
if (it == op_to_inner.end()) {
it = op_to_inner.emplace(v, op_to_inner.size()).first;
result.inner.push_back(v);
}
result.outer.push_back(it->second);
}
return result;
}
};
// An EncodeOption is a potential way of encoding a table.
struct EncodeOption {
// Overall size (in bits) of the table encoding
virtual size_t Size() const = 0;
// Generate the code
virtual void Build(const TableBuilder* builder, int op_bits) const = 0;
virtual ~EncodeOption() {}
};
// NestedTable is a table that uses two level lookup for each slice
struct NestedTable : public EncodeOption {
std::vector<NestedSlice> slices;
int slice_bits;
size_t Size() const override {
size_t sum = 0;
std::vector<Hash> h_emit;
std::vector<Hash> h_inner;
std::vector<Hash> h_outer;
for (size_t i = 0; i < slices.size(); i++) {
h_emit.push_back(HashVec(slices[i].emit));
h_inner.push_back(HashVec(slices[i].inner));
h_outer.push_back(HashVec(slices[i].outer));
}
std::set<Hash> seen;
for (size_t i = 0; i < slices.size(); i++) {
// Try to account for deduplication in the size calculation.
if (seen.count(h_emit[i]) == 0) sum += slices[i].EmitSize();
if (seen.count(h_outer[i]) == 0) sum += slices[i].OuterSize();
if (seen.count(h_inner[i]) == 0) sum += slices[i].OuterSize();
seen.insert(h_emit[i]);
seen.insert(h_outer[i]);
seen.insert(h_inner[i]);
}
if (slice_bits != 0) sum += 3 * 64 * slices.size();
return sum;
}
void Build(const TableBuilder* builder, int op_bits) const override {
Sink* const global_fns = builder->ctx_->global_fns();
Sink* const global_decls = builder->ctx_->global_decls();
Sink* const global_values = builder->ctx_->global_values();
const int id = builder->id_;
std::vector<std::string> lines;
const uint64_t max_inner = MaxInner();
const uint64_t max_outer = MaxOuter();
std::vector<std::string> emit_names;
std::vector<std::string> inner_names;
std::vector<std::string> outer_names;
for (size_t i = 0; i < slices.size(); i++) {
emit_names.push_back(builder->GenArray(
absl::StrCat("table", id, "_", i, "_emit"), "uint8_t",
slices[i].emit, true, global_decls, global_values));
inner_names.push_back(builder->GenArray(
absl::StrCat("table", id, "_", i, "_inner"), TypeForMax(max_inner),
slices[i].inner, true, global_decls, global_values));
outer_names.push_back(builder->GenArray(
absl::StrCat("table", id, "_", i, "_outer"), TypeForMax(max_outer),
slices[i].outer, false, global_decls, global_values));
}
if (slice_bits == 0) {
global_fns->Add(absl::StrCat("static inline uint64_t GetOp", id,
"(size_t i) { return ", inner_names[0],
"[", outer_names[0], "[i]]; }"));
global_fns->Add(absl::StrCat("static inline uint64_t GetEmit", id,
"(size_t, size_t emit) { return ",
emit_names[0], "[emit]; }"));
} else {
GenCompound(id, emit_names, "emit", "uint8_t", global_decls,
global_values);
GenCompound(id, inner_names, "inner", TypeForMax(max_inner),
global_decls, global_values);
GenCompound(id, outer_names, "outer", TypeForMax(max_outer),
global_decls, global_values);
global_fns->Add(absl::StrCat(
"static inline uint64_t GetOp", id, "(size_t i) { return table", id,
"_inner_[i >> ", op_bits - slice_bits, "][table", id,
"_outer_[i >> ", op_bits - slice_bits, "][i & 0x",
absl::Hex((1 << (op_bits - slice_bits)) - 1), "]]; }"));
global_fns->Add(absl::StrCat("static inline uint64_t GetEmit", id,
"(size_t i, size_t emit) { return table",
id, "_emit_[i >> ", op_bits - slice_bits,
"][emit]; }"));
}
}
uint64_t MaxInner() const {
uint64_t max_inner = 0;
for (size_t i = 0; i < slices.size(); i++) {
max_inner = std::max(
max_inner,
*std::max_element(slices[i].inner.begin(), slices[i].inner.end()));
}
return max_inner;
}
int MaxOuter() const {
int max_outer = 0;
for (size_t i = 0; i < slices.size(); i++) {
max_outer = std::max(
max_outer,
*std::max_element(slices[i].outer.begin(), slices[i].outer.end()));
}
return max_outer;
}
};
// Encoding that uses single level lookup for each slice.
struct Table : public EncodeOption {
std::vector<Slice> slices;
int slice_bits;
size_t Size() const override {
size_t sum = 0;
std::vector<Hash> h_emit;
std::vector<Hash> h_ops;
for (size_t i = 0; i < slices.size(); i++) {
h_emit.push_back(HashVec(slices[i].emit));
h_ops.push_back(HashVec(slices[i].ops));
}
std::set<Hash> seen;
for (size_t i = 0; i < slices.size(); i++) {
if (seen.count(h_emit[i]) == 0) sum += slices[i].EmitSize();
if (seen.count(h_ops[i]) == 0) sum += slices[i].OpsSize();
seen.insert(h_emit[i]);
seen.insert(h_ops[i]);
}
return sum + 3 * 64 * slices.size();
}
void Build(const TableBuilder* builder, int op_bits) const override {
Sink* const global_fns = builder->ctx_->global_fns();
Sink* const global_decls = builder->ctx_->global_decls();
Sink* const global_values = builder->ctx_->global_values();
uint64_t max_op = MaxOp();
const int id = builder->id_;
std::vector<std::string> emit_names;
std::vector<std::string> ops_names;
for (size_t i = 0; i < slices.size(); i++) {
emit_names.push_back(builder->GenArray(
absl::StrCat("table", id, "_", i, "_emit"), "uint8_t",
slices[i].emit, true, global_decls, global_values));
ops_names.push_back(builder->GenArray(
absl::StrCat("table", id, "_", i, "_ops"), TypeForMax(max_op),
slices[i].ops, true, global_decls, global_values));
}
if (slice_bits == 0) {
global_fns->Add(absl::StrCat("static inline uint64_t GetOp", id,
"(size_t i) { return ", ops_names[0],
"[i]; }"));
global_fns->Add(absl::StrCat("static inline uint64_t GetEmit", id,
"(size_t, size_t emit) { return ",
emit_names[0], "[emit]; }"));
} else {
GenCompound(id, emit_names, "emit", "uint8_t", global_decls,
global_values);
GenCompound(id, ops_names, "ops", TypeForMax(max_op), global_decls,
global_values);
global_fns->Add(absl::StrCat(
"static inline uint64_t GetOp", id, "(size_t i) { return table", id,
"_ops_[i >> ", op_bits - slice_bits, "][i & 0x",
absl::Hex((1 << (op_bits - slice_bits)) - 1), "]; }"));
global_fns->Add(absl::StrCat("static inline uint64_t GetEmit", id,
"(size_t i, size_t emit) { return table",
id, "_emit_[i >> ", op_bits - slice_bits,
"][emit]; }"));
}
}
uint64_t MaxOp() const {
uint64_t max_op = 0;
for (size_t i = 0; i < slices.size(); i++) {
max_op = std::max(max_op, *std::max_element(slices[i].ops.begin(),
slices[i].ops.end()));
}
return max_op;
}
// Convert to a two-level lookup
std::unique_ptr<NestedTable> MakeNestedTable() {
std::unique_ptr<NestedTable> result(new NestedTable);
result->slice_bits = slice_bits;
for (const auto& slice : slices) {
result->slices.push_back(slice.MakeNestedSlice());
}
return result;
}
};
// Given a number of slices (2**slice_bits), generate a table that uses a
// single level lookup for each slice based on our input.
std::unique_ptr<Table> MakeTable(size_t slice_bits) const {
std::unique_ptr<Table> table = std::make_unique<Table>();
int slices = 1 << slice_bits;
table->slices.resize(slices);
table->slice_bits = slice_bits;
const int pack_consume_bits = ConsumeBits();
const int pack_match_bits = MatchBits();
for (size_t i = 0; i < slices; i++) {
auto& slice = table->slices[i];
for (size_t j = 0; j < elems_.size() / slices; j++) {
const auto& elem = elems_[i * elems_.size() / slices + j];
slice.ops.push_back(elem.consumed_bits |
(elem.match_case << pack_consume_bits) |
(slice.OffsetOf(elem.emit)
<< (pack_consume_bits + pack_match_bits)));
}
}
return table;
}
// Helper to generate a compound table (an array of arrays)
static void GenCompound(int id, std::vector<std::string> names,
std::string ext, std::string type, Sink* global_decls,
Sink* global_values) {
global_decls->Add(absl::StrCat("static const ", type, "* const table", id,
"_", ext, "_[", names.size(), "];"));
global_values->Add(absl::StrCat("const ", type,
"* const HuffDecoderCommon::table", id, "_",
ext, "_[", names.size(), "] = {"));
for (const std::string& name : names) {
global_values->Add(absl::StrCat(" ", name, ","));
}
global_values->Add("};");
}
// Helper to generate an array of values
template <typename T>
std::string GenArray(std::string name, std::string type,
const std::vector<T>& values, bool hex,
Sink* global_decls, Sink* global_values) const {
auto previous_name = ctx_->PreviousNameForArtifact(name, HashVec(values));
if (previous_name.has_value()) {
return absl::StrCat(*previous_name, "_");
}
std::vector<std::string> elems;
elems.reserve(values.size());
for (const auto& elem : values) {
if (hex) {
if (type == "uint8_t") {
elems.push_back(absl::StrCat("0x", absl::Hex(elem, absl::kZeroPad2)));
} else if (type == "uint16_t") {
elems.push_back(absl::StrCat("0x", absl::Hex(elem, absl::kZeroPad4)));
} else {
elems.push_back(absl::StrCat("0x", absl::Hex(elem, absl::kZeroPad8)));
}
} else {
elems.push_back(absl::StrCat(elem));
}
}
std::string data = absl::StrJoin(elems, ", ");
global_decls->Add(absl::StrCat("static const ", type, " ", name, "_[",
values.size(), "];"));
global_values->Add(absl::StrCat("const ", type, " HuffDecoderCommon::",
name, "_[", values.size(), "] = {"));
global_values->Add(absl::StrCat(" ", data));
global_values->Add("};");
return absl::StrCat(name, "_");
}
// Choose an encoding for this set of tables.
// We try all available values for slice count and choose the one that gives
// the smallest footprint.
std::unique_ptr<EncodeOption> Choose() const {
std::unique_ptr<EncodeOption> chosen;
size_t best_size = std::numeric_limits<size_t>::max();
for (size_t slice_bits = 0; (1 << slice_bits) < elems_.size();
slice_bits++) {
auto raw = MakeTable(slice_bits);
size_t raw_size = raw->Size();
auto nested = raw->MakeNestedTable();
size_t nested_size = nested->Size();
if (raw_size < best_size) {
chosen = std::move(raw);
best_size = raw_size;
}
if (nested_size < best_size) {
chosen = std::move(nested);
best_size = nested_size;
}
}
return chosen;
}
BuildCtx* const ctx_;
std::vector<Elem> elems_;
int max_consumed_bits_ = 0;
int max_match_case_ = 0;
const int id_;
};
///////////////////////////////////////////////////////////////////////////////
// FunMaker
// Handles generating the code for various functions.
class FunMaker {
public:
explicit FunMaker(Sink* sink) : sink_(sink) {}
// Generate a refill function - that ensures the incoming bitmask has enough
// bits for the next step.
std::string RefillTo(int n) {
if (have_refills_.count(n) == 0) {
have_refills_.insert(n);
auto fn = NewFun(absl::StrCat("RefillTo", n), "bool");
auto s = fn->Add<Switch>("buffer_len_");
for (int i = 0; i < n; i++) {
auto c = s->Case(absl::StrCat(i));
const int bytes_needed = (n - i + 7) / 8;
c->Add(absl::StrCat("return ", ReadBytes(bytes_needed), ";"));
}
fn->Add("return true;");
}
return absl::StrCat("RefillTo", n, "()");
}
// At callsite, generate a call to a new function with base name
// base_name (new functions get a suffix of how many instances of base_name
// there have been).
// Return a sink to fill in the body of the new function.
Sink* CallNewFun(std::string base_name, Sink* callsite) {
std::string name = absl::StrCat(base_name, have_funs_[base_name]++);
callsite->Add(absl::StrCat(name, "();"));
return NewFun(name, "void");
}
private:
Sink* NewFun(std::string name, std::string returns) {
sink_->Add(absl::StrCat(returns, " ", name, "() {"));
auto fn = sink_->Add<Indent>();
sink_->Add("}");
return fn;
}
// Bring in some number of bytes from the input stream to our current read
// bits.
std::string ReadBytes(int bytes_needed) {
if (have_reads_.count(bytes_needed) == 0) {
have_reads_.insert(bytes_needed);
auto fn = NewFun(absl::StrCat("Read", bytes_needed), "bool");
fn->Add(absl::StrCat("if (end_ - begin_ < ", bytes_needed,
") return false;"));
fn->Add(absl::StrCat("buffer_ <<= ", 8 * bytes_needed, ";"));
for (int i = 0; i < bytes_needed; i++) {
fn->Add(absl::StrCat("buffer_ |= static_cast<uint64_t>(*begin_++) << ",
8 * (bytes_needed - i - 1), ";"));
}
fn->Add(absl::StrCat("buffer_len_ += ", 8 * bytes_needed, ";"));
fn->Add("return true;");
}
return absl::StrCat("Read", bytes_needed, "()");
}
std::set<int> have_refills_;
std::set<int> have_reads_;
std::map<std::string, int> have_funs_;
Sink* sink_;
};
///////////////////////////////////////////////////////////////////////////////
// BuildCtx implementation
void BuildCtx::AddDone(SymSet start_syms, int num_bits, bool all_ones_so_far,
Sink* out) {
out->Add("done_ = true;");
if (num_bits == 1) {
if (!all_ones_so_far) out->Add("ok_ = false;");
return;
}
// we must have 0 < buffer_len_ < num_bits
auto s = out->Add<Switch>("buffer_len_");
auto c0 = s->Case("0");
if (!all_ones_so_far) c0->Add("ok_ = false;");
c0->Add("return;");
for (int i = 1; i < num_bits; i++) {
auto c = s->Case(absl::StrCat(i));
SymSet maybe;
for (auto sym : start_syms) {
if (sym.bits.length() > i) continue;
maybe.push_back(sym);
}
if (maybe.empty()) {
if (all_ones_so_far) {
c->Add("ok_ = (buffer_ & ((1<<buffer_len_)-1)) == (1<<buffer_len_)-1;");
} else {
c->Add("ok_ = false;");
}
c->Add("return;");
continue;
}
TableBuilder table_builder(this);
enum Cases {
kNoEmitOk,
kFail,
kEmitOk,
};
for (size_t n = 0; n < (1 << i); n++) {
if (all_ones_so_far && n == (1 << i) - 1) {
table_builder.Add(kNoEmitOk, {}, 0);
goto next;
}
for (auto sym : maybe) {
if ((n >> (i - sym.bits.length())) == sym.bits.mask()) {
for (int j = 0; j < (i - sym.bits.length()); j++) {
if ((n & (1 << j)) == 0) {
table_builder.Add(kFail, {}, 0);
goto next;
}
}
table_builder.Add(kEmitOk, {static_cast<uint8_t>(sym.symbol)}, 0);
goto next;
}
}
table_builder.Add(kFail, {}, 0);
next:;
}
table_builder.Build();
c->Add(absl::StrCat("const auto index = buffer_ & ", (1 << i) - 1, ";"));
c->Add(absl::StrCat("const auto op = ", table_builder.OpAccessor("index"),
";"));
if (table_builder.ConsumeBits() != 0) {
fprintf(stderr, "consume bits = %d\n", table_builder.ConsumeBits());
abort();
}
auto s_fin = c->Add<Switch>(
absl::StrCat("op & ", (1 << table_builder.MatchBits()) - 1));
auto emit_ok = s_fin->Case(absl::StrCat(kEmitOk));
emit_ok->Add(absl::StrCat(
"sink_(",
table_builder.EmitAccessor(
"index", absl::StrCat("op >>", table_builder.MatchBits())),
");"));
emit_ok->Add("break;");
auto fail = s_fin->Case(absl::StrCat(kFail));
fail->Add("ok_ = false;");
fail->Add("break;");
c->Add("return;");
}
}
void BuildCtx::AddStep(SymSet start_syms, int num_bits, bool is_top,
bool refill, int depth, Sink* out) {
TableBuilder table_builder(this);
if (refill) {
out->Add(absl::StrCat("if (!", fun_maker_->RefillTo(num_bits), ") {"));
auto ifblk = out->Add<Indent>();
if (!is_top) {
Sym some = start_syms[0];
auto sym = grpc_chttp2_huffsyms[some.symbol];
int consumed_len = (sym.length - some.bits.length());
uint32_t consumed_mask = sym.bits >> some.bits.length();
bool all_ones_so_far = consumed_mask == ((1 << consumed_len) - 1);
AddDone(start_syms, num_bits, all_ones_so_far,
fun_maker_->CallNewFun("Done", ifblk));
ifblk->Add("return;");
} else {
AddDone(start_syms, num_bits, true,
fun_maker_->CallNewFun("Done", ifblk));
ifblk->Add("break;");
}
out->Add("}");
}
out->Add(absl::StrCat("const auto index = (buffer_ >> (buffer_len_ - ",
num_bits, ")) & 0x", absl::Hex((1 << num_bits) - 1),
";"));
std::map<MatchCase, int> match_cases;
for (int i = 0; i < (1 << num_bits); i++) {
auto actions = ActionsFor(BitQueue(i, num_bits), start_syms, is_top);
auto add_case = [&match_cases](MatchCase match_case) {
if (match_cases.find(match_case) == match_cases.end()) {
match_cases[match_case] = match_cases.size();
}
return match_cases[match_case];
};
if (actions.emit.size() == 1 && actions.emit[0] == 256) {
table_builder.Add(add_case(End{}), {}, actions.consumed);
} else if (actions.consumed == 0) {
table_builder.Add(add_case(Unmatched{std::move(actions.remaining)}), {},
num_bits);
} else {
std::vector<uint8_t> emit;
for (auto sym : actions.emit) emit.push_back(sym);
table_builder.Add(
add_case(Matched{static_cast<int>(actions.emit.size())}),
std::move(emit), actions.consumed);
}
}
table_builder.Build();
out->Add(
absl::StrCat("const auto op = ", table_builder.OpAccessor("index"), ";"));
out->Add(absl::StrCat("const int consumed = op & ",
(1 << table_builder.ConsumeBits()) - 1, ";"));
out->Add("buffer_len_ -= consumed;");
out->Add(absl::StrCat("const auto emit_ofs = op >> ",
table_builder.ConsumeBits() + table_builder.MatchBits(),
";"));
if (match_cases.size() == 1) {
AddMatchBody(&table_builder, "index", "emit_ofs",
match_cases.begin()->first, is_top, refill, depth, out);
} else {
auto s = out->Add<Switch>(
absl::StrCat("(op >> ", table_builder.ConsumeBits(), ") & ",
(1 << table_builder.MatchBits()) - 1));
for (auto kv : match_cases) {
auto c = s->Case(absl::StrCat(kv.second));
AddMatchBody(&table_builder, "index", "emit_ofs", kv.first, is_top,
refill, depth, c);
c->Add("break;");
}
}
}
void BuildCtx::AddMatchBody(TableBuilder* table_builder, std::string index,
std::string ofs, const MatchCase& match_case,
bool is_top, bool refill, int depth, Sink* out) {
if (absl::holds_alternative<End>(match_case)) {
out->Add("begin_ = end_;");
out->Add("buffer_len_ = 0;");
return;
}
if (auto* p = absl::get_if<Unmatched>(&match_case)) {
if (refill) {
int max_bits = 0;
for (auto sym : p->syms) max_bits = std::max(max_bits, sym.bits.length());
AddStep(p->syms,
depth + 1 >= max_bits_for_depth_.size()
? max_bits
: std::min(max_bits, max_bits_for_depth_[depth + 1]),
false, true, depth + 1,
fun_maker_->CallNewFun("DecodeStep", out));
}
return;
}
const auto& matched = absl::get<Matched>(match_case);
for (int i = 0; i < matched.emits; i++) {
out->Add(absl::StrCat(
"sink_(",
table_builder->EmitAccessor(index, absl::StrCat(ofs, " + ", i)), ");"));
}
}
///////////////////////////////////////////////////////////////////////////////
// Driver code
// Generated header and source code
struct BuildOutput {
std::string header;
std::string source;
};
// Given max_bits_for_depth = {n1,n2,n3,...}
// Build a decoder that first considers n1 bits, then n2, then n3, ...
BuildOutput Build(std::vector<int> max_bits_for_depth) {
auto hdr = std::make_unique<Sink>();
auto src = std::make_unique<Sink>();
hdr->Add<Prelude>();
src->Add<Prelude>();
hdr->Add("#ifndef GRPC_CORE_EXT_TRANSPORT_CHTTP2_TRANSPORT_DECODE_HUFF_H");
hdr->Add("#define GRPC_CORE_EXT_TRANSPORT_CHTTP2_TRANSPORT_DECODE_HUFF_H");
src->Add(
"#include \"src/core/ext/transport/chttp2/transport/decode_huff.h\"");
hdr->Add("#include <cstddef>");
hdr->Add("#include <grpc/support/port_platform.h>");
src->Add("#include <grpc/support/port_platform.h>");
hdr->Add("#include <cstdint>");
hdr->Add(
absl::StrCat("// GEOMETRY: ", absl::StrJoin(max_bits_for_depth, ",")));
hdr->Add("namespace grpc_core {");
src->Add("namespace grpc_core {");
hdr->Add("class HuffDecoderCommon {");
hdr->Add(" protected:");
auto global_fns = hdr->Add<Indent>();
hdr->Add(" private:");
auto global_decls = hdr->Add<Indent>();
hdr->Add("};");
hdr->Add(
"template<typename F> class HuffDecoder : public HuffDecoderCommon {");
hdr->Add(" public:");
auto pub = hdr->Add<Indent>();
hdr->Add(" private:");
auto prv = hdr->Add<Indent>();
FunMaker fun_maker(prv->Add<Sink>());
hdr->Add("};");
hdr->Add("} // namespace grpc_core");
hdr->Add("#endif // GRPC_CORE_EXT_TRANSPORT_CHTTP2_TRANSPORT_DECODE_HUFF_H");
auto global_values = src->Add<Indent>();
src->Add("} // namespace grpc_core");
BuildCtx ctx(std::move(max_bits_for_depth), global_fns, global_decls,
global_values, &fun_maker);
// constructor
pub->Add(
"HuffDecoder(F sink, const uint8_t* begin, const uint8_t* end) : "
"sink_(sink), begin_(begin), end_(end) {}");
// members
prv->Add("F sink_;");
prv->Add("const uint8_t* begin_;");
prv->Add("const uint8_t* const end_;");
prv->Add("uint64_t buffer_ = 0;");
prv->Add("int buffer_len_ = 0;");
prv->Add("bool ok_ = true;");
prv->Add("bool done_ = false;");
// main fn
pub->Add("bool Run() {");
auto body = pub->Add<Indent>();
body->Add("while (!done_) {");
ctx.AddStep(AllSyms(), ctx.MaxBitsForTop(), true, true, 0,
body->Add<Indent>());
body->Add("}");
body->Add("return ok_;");
pub->Add("}");
return {hdr->ToString(), src->ToString()};
}
// Generate all permutations of max_bits_for_depth for the Build function,
// with a minimum step size of 5 bits (needed for http2 I think) and a
// configurable maximum step size.
class PermutationBuilder {
public:
explicit PermutationBuilder(int max_depth) : max_depth_(max_depth) {}
std::vector<std::vector<int>> Run() {
Step({});
return std::move(perms_);
}
private:
void Step(std::vector<int> so_far) {
int sum_so_far = std::accumulate(so_far.begin(), so_far.end(), 0);
if (so_far.size() > max_depth_ ||
(so_far.size() == max_depth_ && sum_so_far != 30)) {
return;
}
if (sum_so_far + 5 > 30) {
perms_.emplace_back(std::move(so_far));
return;
}
for (int i = 5; i <= std::min(30 - sum_so_far, 16); i++) {
auto p = so_far;
p.push_back(i);
Step(std::move(p));
}
}
const int max_depth_;
std::vector<std::vector<int>> perms_;
};
// Does what it says.
void WriteFile(std::string filename, std::string content) {
std::ofstream ofs(filename);
ofs << content;
}
int main(void) {
BuildOutput best;
size_t best_len = std::numeric_limits<size_t>::max();
std::vector<std::unique_ptr<BuildOutput>> results;
std::queue<std::thread> threads;
// Generate all permutations of max_bits_for_depth for the Build function.
// Then generate all variations of the code.
for (const auto& perm : PermutationBuilder(30).Run()) {
while (threads.size() > 200) {
threads.front().join();
threads.pop();
}
results.emplace_back(std::make_unique<BuildOutput>());
threads.emplace([perm, r = results.back().get()] { *r = Build(perm); });
}
while (!threads.empty()) {
threads.front().join();
threads.pop();
}
// Choose the variation that generates the least code, weighted towards header
// length
for (auto& r : results) {
size_t l = 5 * r->header.length() + r->source.length();
if (l < best_len) {
best_len = l;
best = std::move(*r);
}
}
WriteFile("src/core/ext/transport/chttp2/transport/decode_huff.h",
best.header);
WriteFile("src/core/ext/transport/chttp2/transport/decode_huff.cc",
best.source);
return 0;
}
|