File: bm_diff.py

package info (click to toggle)
grpc 1.51.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 78,328 kB
  • sloc: cpp: 361,873; python: 72,206; ansic: 37,787; objc: 12,434; ruby: 11,521; sh: 7,652; php: 7,615; makefile: 3,481; xml: 3,246; cs: 1,836; javascript: 1,614; java: 465; pascal: 227; awk: 132
file content (260 lines) | stat: -rwxr-xr-x 8,522 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#!/usr/bin/env python3
#
# Copyright 2017 gRPC authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Computes the diff between two bm runs and outputs significant results """

import argparse
import collections
import json
import os
import subprocess
import sys

sys.path.append(os.path.join(os.path.dirname(sys.argv[0]), '..'))

import bm_constants
import bm_json
import bm_speedup
import tabulate

verbose = False


def _median(ary):
    assert (len(ary))
    ary = sorted(ary)
    n = len(ary)
    if n % 2 == 0:
        return (ary[(n - 1) // 2] + ary[(n - 1) // 2 + 1]) / 2.0
    else:
        return ary[n // 2]


def _args():
    argp = argparse.ArgumentParser(
        description='Perform diff on microbenchmarks')
    argp.add_argument('-t',
                      '--track',
                      choices=sorted(bm_constants._INTERESTING),
                      nargs='+',
                      default=sorted(bm_constants._INTERESTING),
                      help='Which metrics to track')
    argp.add_argument('-b',
                      '--benchmarks',
                      nargs='+',
                      choices=bm_constants._AVAILABLE_BENCHMARK_TESTS,
                      default=bm_constants._AVAILABLE_BENCHMARK_TESTS,
                      help='Which benchmarks to run')
    argp.add_argument(
        '-l',
        '--loops',
        type=int,
        default=20,
        help=
        'Number of times to loops the benchmarks. Must match what was passed to bm_run.py'
    )
    argp.add_argument('-r',
                      '--regex',
                      type=str,
                      default="",
                      help='Regex to filter benchmarks run')
    argp.add_argument('-n', '--new', type=str, help='New benchmark name')
    argp.add_argument('-o', '--old', type=str, help='Old benchmark name')
    argp.add_argument('-v',
                      '--verbose',
                      type=bool,
                      help='Print details of before/after')
    args = argp.parse_args()
    global verbose
    if args.verbose:
        verbose = True
    assert args.new
    assert args.old
    return args


def _maybe_print(str):
    if verbose:
        print(str)


class Benchmark:

    def __init__(self):
        self.samples = {
            True: collections.defaultdict(list),
            False: collections.defaultdict(list)
        }
        self.final = {}
        self.speedup = {}

    def add_sample(self, track, data, new):
        for f in track:
            if f in data:
                self.samples[new][f].append(float(data[f]))

    def process(self, track, new_name, old_name):
        for f in sorted(track):
            new = self.samples[True][f]
            old = self.samples[False][f]
            if not new or not old:
                continue
            mdn_diff = abs(_median(new) - _median(old))
            _maybe_print('%s: %s=%r %s=%r mdn_diff=%r' %
                         (f, new_name, new, old_name, old, mdn_diff))
            s = bm_speedup.speedup(new, old, 1e-5)
            self.speedup[f] = s
            if abs(s) > 3:
                if mdn_diff > 0.5:
                    self.final[f] = '%+d%%' % s
        return self.final.keys()

    def skip(self):
        return not self.final

    def row(self, flds):
        return [self.final[f] if f in self.final else '' for f in flds]

    def speedup(self, name):
        if name in self.speedup:
            return self.speedup[name]
        return None


def _read_json(filename, badjson_files, nonexistant_files):
    stripped = ".".join(filename.split(".")[:-2])
    try:
        with open(filename) as f:
            r = f.read()
            return json.loads(r)
    except IOError as e:
        if stripped in nonexistant_files:
            nonexistant_files[stripped] += 1
        else:
            nonexistant_files[stripped] = 1
        return None
    except ValueError as e:
        print(r)
        if stripped in badjson_files:
            badjson_files[stripped] += 1
        else:
            badjson_files[stripped] = 1
        return None


def fmt_dict(d):
    return ''.join(["    " + k + ": " + str(d[k]) + "\n" for k in d])


def diff(bms, loops, regex, track, old, new):
    benchmarks = collections.defaultdict(Benchmark)

    badjson_files = {}
    nonexistant_files = {}
    for bm in bms:
        for loop in range(0, loops):
            for line in subprocess.check_output([
                    'bm_diff_%s/opt/%s' % (old, bm), '--benchmark_list_tests',
                    '--benchmark_filter=%s' % regex
            ]).splitlines():
                line = line.decode('UTF-8')
                stripped_line = line.strip().replace("/", "_").replace(
                    "<", "_").replace(">", "_").replace(", ", "_")
                js_new_opt = _read_json(
                    '%s.%s.opt.%s.%d.json' % (bm, stripped_line, new, loop),
                    badjson_files, nonexistant_files)
                js_old_opt = _read_json(
                    '%s.%s.opt.%s.%d.json' % (bm, stripped_line, old, loop),
                    badjson_files, nonexistant_files)
                for row in bm_json.expand_json(js_new_opt):
                    name = row['cpp_name']
                    if name.endswith('_mean') or name.endswith('_stddev'):
                        continue
                    benchmarks[name].add_sample(track, row, True)
                for row in bm_json.expand_json(js_old_opt):
                    name = row['cpp_name']
                    if name.endswith('_mean') or name.endswith('_stddev'):
                        continue
                    benchmarks[name].add_sample(track, row, False)

    really_interesting = set()
    for name, bm in benchmarks.items():
        _maybe_print(name)
        really_interesting.update(bm.process(track, new, old))
    fields = [f for f in track if f in really_interesting]

    # figure out the significance of the changes... right now we take the 95%-ile
    # benchmark delta %-age, and then apply some hand chosen thresholds
    histogram = []
    _NOISY = ["BM_WellFlushed"]
    for name, bm in benchmarks.items():
        if name in _NOISY:
            print("skipping noisy benchmark '%s' for labelling evaluation" %
                  name)
        if bm.skip():
            continue
        d = bm.speedup['cpu_time']
        if d is None:
            continue
        histogram.append(d)
    histogram.sort()
    print("histogram of speedups: ", histogram)
    if len(histogram) == 0:
        significance = 0
    else:
        delta = histogram[int(len(histogram) * 0.95)]
        mul = 1
        if delta < 0:
            delta = -delta
            mul = -1
        if delta < 2:
            significance = 0
        elif delta < 5:
            significance = 1
        elif delta < 10:
            significance = 2
        else:
            significance = 3
        significance *= mul

    headers = ['Benchmark'] + fields
    rows = []
    for name in sorted(benchmarks.keys()):
        if benchmarks[name].skip():
            continue
        rows.append([name] + benchmarks[name].row(fields))
    note = None
    if len(badjson_files):
        note = 'Corrupt JSON data (indicates timeout or crash): \n%s' % fmt_dict(
            badjson_files)
    if len(nonexistant_files):
        if note:
            note += '\n\nMissing files (indicates new benchmark): \n%s' % fmt_dict(
                nonexistant_files)
        else:
            note = '\n\nMissing files (indicates new benchmark): \n%s' % fmt_dict(
                nonexistant_files)
    if rows:
        return tabulate.tabulate(rows, headers=headers,
                                 floatfmt='+.2f'), note, significance
    else:
        return None, note, 0


if __name__ == '__main__':
    args = _args()
    diff, note = diff(args.benchmarks, args.loops, args.regex, args.track,
                      args.old, args.new, args.counters)
    print('%s\n%s' % (note, diff if diff else "No performance differences"))