1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
/* mpi-pow.c - MPI functions for exponentiation
* Copyright (C) 1994, 1996, 1998, 2000, 2002
* 2003 Free Software Foundation, Inc.
* 2013 g10 Code GmbH
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*
* Note: This code is heavily based on the GNU MP Library.
* Actually it's the same code with only minor changes in the
* way the data is stored; this is to support the abstraction
* of an optional secure memory allocation which may be used
* to avoid revealing of sensitive data due to paging etc.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "mpi-internal.h"
#include "longlong.h"
/****************
* RES = BASE ^ EXPO mod MOD
*/
void
gcry_mpi_powm (gcry_mpi_t res,
gcry_mpi_t base, gcry_mpi_t expo, gcry_mpi_t mod)
{
/* Pointer to the limbs of the arguments, their size and signs. */
mpi_ptr_t rp, ep, mp, bp;
mpi_size_t esize, msize, bsize, rsize;
int msign, bsign, rsign;
/* Flags telling the secure allocation status of the arguments. */
int esec, msec, bsec;
/* Size of the result including space for temporary values. */
mpi_size_t size;
/* Helper. */
int mod_shift_cnt;
int negative_result;
mpi_ptr_t mp_marker = NULL;
mpi_ptr_t bp_marker = NULL;
mpi_ptr_t ep_marker = NULL;
mpi_ptr_t xp_marker = NULL;
unsigned int mp_nlimbs = 0;
unsigned int bp_nlimbs = 0;
unsigned int ep_nlimbs = 0;
unsigned int xp_nlimbs = 0;
mpi_ptr_t tspace = NULL;
mpi_size_t tsize = 0;
esize = expo->nlimbs;
msize = mod->nlimbs;
size = 2 * msize;
msign = mod->sign;
esec = mpi_is_secure(expo);
msec = mpi_is_secure(mod);
bsec = mpi_is_secure(base);
rp = res->d;
ep = expo->d;
if (!msize)
grub_fatal ("mpi division by zero");
if (!esize)
{
/* Exponent is zero, result is 1 mod MOD, i.e., 1 or 0 depending
on if MOD equals 1. */
res->nlimbs = (msize == 1 && mod->d[0] == 1) ? 0 : 1;
if (res->nlimbs)
{
RESIZE_IF_NEEDED (res, 1);
rp = res->d;
rp[0] = 1;
}
res->sign = 0;
goto leave;
}
/* Normalize MOD (i.e. make its most significant bit set) as
required by mpn_divrem. This will make the intermediate values
in the calculation slightly larger, but the correct result is
obtained after a final reduction using the original MOD value. */
mp_nlimbs = msec? msize:0;
mp = mp_marker = mpi_alloc_limb_space(msize, msec);
count_leading_zeros (mod_shift_cnt, mod->d[msize-1]);
if (mod_shift_cnt)
_gcry_mpih_lshift (mp, mod->d, msize, mod_shift_cnt);
else
MPN_COPY( mp, mod->d, msize );
bsize = base->nlimbs;
bsign = base->sign;
if (bsize > msize)
{
/* The base is larger than the module. Reduce it.
Allocate (BSIZE + 1) with space for remainder and quotient.
(The quotient is (bsize - msize + 1) limbs.) */
bp_nlimbs = bsec ? (bsize + 1):0;
bp = bp_marker = mpi_alloc_limb_space( bsize + 1, bsec );
MPN_COPY ( bp, base->d, bsize );
/* We don't care about the quotient, store it above the
* remainder, at BP + MSIZE. */
_gcry_mpih_divrem( bp + msize, 0, bp, bsize, mp, msize );
bsize = msize;
/* Canonicalize the base, since we are going to multiply with it
quite a few times. */
MPN_NORMALIZE( bp, bsize );
}
else
bp = base->d;
if (!bsize)
{
res->nlimbs = 0;
res->sign = 0;
goto leave;
}
/* Make BASE, EXPO and MOD not overlap with RES. */
if ( rp == bp )
{
/* RES and BASE are identical. Allocate temp. space for BASE. */
gcry_assert (!bp_marker);
bp_nlimbs = bsec? bsize:0;
bp = bp_marker = mpi_alloc_limb_space( bsize, bsec );
MPN_COPY(bp, rp, bsize);
}
if ( rp == ep )
{
/* RES and EXPO are identical. Allocate temp. space for EXPO. */
ep_nlimbs = esec? esize:0;
ep = ep_marker = mpi_alloc_limb_space( esize, esec );
MPN_COPY(ep, rp, esize);
}
if ( rp == mp )
{
/* RES and MOD are identical. Allocate temporary space for MOD.*/
gcry_assert (!mp_marker);
mp_nlimbs = msec?msize:0;
mp = mp_marker = mpi_alloc_limb_space( msize, msec );
MPN_COPY(mp, rp, msize);
}
/* Copy base to the result. */
if (res->alloced < size)
{
mpi_resize (res, size);
rp = res->d;
}
MPN_COPY ( rp, bp, bsize );
rsize = bsize;
rsign = bsign;
/* Main processing. */
{
mpi_size_t i;
mpi_ptr_t xp;
int c;
mpi_limb_t e;
mpi_limb_t carry_limb;
struct karatsuba_ctx karactx;
xp_nlimbs = msec? (2 * (msize + 1)):0;
xp = xp_marker = mpi_alloc_limb_space( 2 * (msize + 1), msec );
memset( &karactx, 0, sizeof karactx );
negative_result = (ep[0] & 1) && base->sign;
i = esize - 1;
e = ep[i];
count_leading_zeros (c, e);
e = (e << c) << 1; /* Shift the expo bits to the left, lose msb. */
c = BITS_PER_MPI_LIMB - 1 - c;
/* Main loop.
Make the result be pointed to alternately by XP and RP. This
helps us avoid block copying, which would otherwise be
necessary with the overlap restrictions of
_gcry_mpih_divmod. With 50% probability the result after this
loop will be in the area originally pointed by RP (==RES->d),
and with 50% probability in the area originally pointed to by XP. */
for (;;)
{
while (c)
{
mpi_ptr_t tp;
mpi_size_t xsize;
/*mpih_mul_n(xp, rp, rp, rsize);*/
if ( rsize < KARATSUBA_THRESHOLD )
_gcry_mpih_sqr_n_basecase( xp, rp, rsize );
else
{
if ( !tspace )
{
tsize = 2 * rsize;
tspace = mpi_alloc_limb_space( tsize, 0 );
}
else if ( tsize < (2*rsize) )
{
_gcry_mpi_free_limb_space (tspace, 0);
tsize = 2 * rsize;
tspace = mpi_alloc_limb_space (tsize, 0 );
}
_gcry_mpih_sqr_n (xp, rp, rsize, tspace);
}
xsize = 2 * rsize;
if ( xsize > msize )
{
_gcry_mpih_divrem(xp + msize, 0, xp, xsize, mp, msize);
xsize = msize;
}
tp = rp; rp = xp; xp = tp;
rsize = xsize;
/* To mitigate the Yarom/Falkner flush+reload cache
* side-channel attack on the RSA secret exponent, we do
* the multiplication regardless of the value of the
* high-bit of E. But to avoid this performance penalty
* we do it only if the exponent has been stored in secure
* memory and we can thus assume it is a secret exponent. */
if (esec || (mpi_limb_signed_t)e < 0)
{
/*mpih_mul( xp, rp, rsize, bp, bsize );*/
if( bsize < KARATSUBA_THRESHOLD )
_gcry_mpih_mul ( xp, rp, rsize, bp, bsize );
else
_gcry_mpih_mul_karatsuba_case (xp, rp, rsize, bp, bsize,
&karactx);
xsize = rsize + bsize;
if ( xsize > msize )
{
_gcry_mpih_divrem(xp + msize, 0, xp, xsize, mp, msize);
xsize = msize;
}
}
if ( (mpi_limb_signed_t)e < 0 )
{
tp = rp; rp = xp; xp = tp;
rsize = xsize;
}
e <<= 1;
c--;
}
i--;
if ( i < 0 )
break;
e = ep[i];
c = BITS_PER_MPI_LIMB;
}
/* We shifted MOD, the modulo reduction argument, left
MOD_SHIFT_CNT steps. Adjust the result by reducing it with the
original MOD.
Also make sure the result is put in RES->d (where it already
might be, see above). */
if ( mod_shift_cnt )
{
carry_limb = _gcry_mpih_lshift( res->d, rp, rsize, mod_shift_cnt);
rp = res->d;
if ( carry_limb )
{
rp[rsize] = carry_limb;
rsize++;
}
}
else if (res->d != rp)
{
MPN_COPY (res->d, rp, rsize);
rp = res->d;
}
if ( rsize >= msize )
{
_gcry_mpih_divrem(rp + msize, 0, rp, rsize, mp, msize);
rsize = msize;
}
/* Remove any leading zero words from the result. */
if ( mod_shift_cnt )
_gcry_mpih_rshift( rp, rp, rsize, mod_shift_cnt);
MPN_NORMALIZE (rp, rsize);
_gcry_mpih_release_karatsuba_ctx (&karactx );
}
/* Fixup for negative results. */
if ( negative_result && rsize )
{
if ( mod_shift_cnt )
_gcry_mpih_rshift( mp, mp, msize, mod_shift_cnt);
_gcry_mpih_sub( rp, mp, msize, rp, rsize);
rsize = msize;
rsign = msign;
MPN_NORMALIZE(rp, rsize);
}
gcry_assert (res->d == rp);
res->nlimbs = rsize;
res->sign = rsign;
leave:
if (mp_marker)
_gcry_mpi_free_limb_space( mp_marker, mp_nlimbs );
if (bp_marker)
_gcry_mpi_free_limb_space( bp_marker, bp_nlimbs );
if (ep_marker)
_gcry_mpi_free_limb_space( ep_marker, ep_nlimbs );
if (xp_marker)
_gcry_mpi_free_limb_space( xp_marker, xp_nlimbs );
if (tspace)
_gcry_mpi_free_limb_space( tspace, 0 );
}
|