1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
|
/* ec.c - Elliptic Curve functions
Copyright (C) 2007 Free Software Foundation, Inc.
This file is part of Libgcrypt.
Libgcrypt is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version.
Libgcrypt is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
USA. */
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include "mpi-internal.h"
#include "longlong.h"
#include "g10lib.h"
#define point_init(a) _gcry_mpi_ec_point_init ((a))
#define point_free(a) _gcry_mpi_ec_point_free ((a))
/* Object to represent a point in projective coordinates. */
/* Currently defined in mpi.h */
/* This context is used with all our EC functions. */
struct mpi_ec_ctx_s
{
/* Domain parameters. */
gcry_mpi_t p; /* Prime specifying the field GF(p). */
gcry_mpi_t a; /* First coefficient of the Weierstrass equation. */
int a_is_pminus3; /* True if A = P - 3. */
/* Some often used constants. */
gcry_mpi_t one;
gcry_mpi_t two;
gcry_mpi_t three;
gcry_mpi_t four;
gcry_mpi_t eight;
gcry_mpi_t two_inv_p;
/* Scratch variables. */
gcry_mpi_t scratch[11];
/* Helper for fast reduction. */
/* int nist_nbits; /\* If this is a NIST curve, the number of bits. *\/ */
/* gcry_mpi_t s[10]; */
/* gcry_mpi_t c; */
};
/* Initialized a point object. gcry_mpi_ec_point_free shall be used
to release this object. */
void
_gcry_mpi_ec_point_init (mpi_point_t *p)
{
p->x = mpi_new (0);
p->y = mpi_new (0);
p->z = mpi_new (0);
}
/* Release a point object. */
void
_gcry_mpi_ec_point_free (mpi_point_t *p)
{
mpi_free (p->x); p->x = NULL;
mpi_free (p->y); p->y = NULL;
mpi_free (p->z); p->z = NULL;
}
/* Set the value from S into D. */
static void
point_set (mpi_point_t *d, mpi_point_t *s)
{
mpi_set (d->x, s->x);
mpi_set (d->y, s->y);
mpi_set (d->z, s->z);
}
static void
ec_addm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, mpi_ec_t ctx)
{
mpi_addm (w, u, v, ctx->p);
}
static void
ec_subm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, mpi_ec_t ctx)
{
mpi_subm (w, u, v, ctx->p);
}
static void
ec_mulm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, mpi_ec_t ctx)
{
#if 0
/* NOTE: This code works only for limb sizes of 32 bit. */
mpi_limb_t *wp, *sp;
if (ctx->nist_nbits == 192)
{
mpi_mul (w, u, v);
mpi_resize (w, 12);
wp = w->d;
sp = ctx->s[0]->d;
sp[0*2+0] = wp[0*2+0];
sp[0*2+1] = wp[0*2+1];
sp[1*2+0] = wp[1*2+0];
sp[1*2+1] = wp[1*2+1];
sp[2*2+0] = wp[2*2+0];
sp[2*2+1] = wp[2*2+1];
sp = ctx->s[1]->d;
sp[0*2+0] = wp[3*2+0];
sp[0*2+1] = wp[3*2+1];
sp[1*2+0] = wp[3*2+0];
sp[1*2+1] = wp[3*2+1];
sp[2*2+0] = 0;
sp[2*2+1] = 0;
sp = ctx->s[2]->d;
sp[0*2+0] = 0;
sp[0*2+1] = 0;
sp[1*2+0] = wp[4*2+0];
sp[1*2+1] = wp[4*2+1];
sp[2*2+0] = wp[4*2+0];
sp[2*2+1] = wp[4*2+1];
sp = ctx->s[3]->d;
sp[0*2+0] = wp[5*2+0];
sp[0*2+1] = wp[5*2+1];
sp[1*2+0] = wp[5*2+0];
sp[1*2+1] = wp[5*2+1];
sp[2*2+0] = wp[5*2+0];
sp[2*2+1] = wp[5*2+1];
ctx->s[0]->nlimbs = 6;
ctx->s[1]->nlimbs = 6;
ctx->s[2]->nlimbs = 6;
ctx->s[3]->nlimbs = 6;
mpi_add (ctx->c, ctx->s[0], ctx->s[1]);
mpi_add (ctx->c, ctx->c, ctx->s[2]);
mpi_add (ctx->c, ctx->c, ctx->s[3]);
while ( mpi_cmp (ctx->c, ctx->p ) >= 0 )
mpi_sub ( ctx->c, ctx->c, ctx->p );
mpi_set (w, ctx->c);
}
else if (ctx->nist_nbits == 384)
{
int i;
mpi_mul (w, u, v);
mpi_resize (w, 24);
wp = w->d;
#define NEXT(a) do { ctx->s[(a)]->nlimbs = 12; \
sp = ctx->s[(a)]->d; \
i = 0; } while (0)
#define X(a) do { sp[i++] = wp[(a)];} while (0)
#define X0(a) do { sp[i++] = 0; } while (0)
NEXT(0);
X(0);X(1);X(2);X(3);X(4);X(5);X(6);X(7);X(8);X(9);X(10);X(11);
NEXT(1);
X0();X0();X0();X0();X(21);X(22);X(23);X0();X0();X0();X0();X0();
NEXT(2);
X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);X(20);X(21);X(22);X(23);
NEXT(3);
X(21);X(22);X(23);X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);X(20);
NEXT(4);
X0();X(23);X0();X(20);X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);
NEXT(5);
X0();X0();X0();X0();X(20);X(21);X(22);X(23);X0();X0();X0();X0();
NEXT(6);
X(20);X0();X0();X(21);X(22);X(23);X0();X0();X0();X0();X0();X0();
NEXT(7);
X(23);X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);X(20);X(21);X(22);
NEXT(8);
X0();X(20);X(21);X(22);X(23);X0();X0();X0();X0();X0();X0();X0();
NEXT(9);
X0();X0();X0();X(23);X(23);X0();X0();X0();X0();X0();X0();X0();
#undef X0
#undef X
#undef NEXT
mpi_add (ctx->c, ctx->s[0], ctx->s[1]);
mpi_add (ctx->c, ctx->c, ctx->s[1]);
mpi_add (ctx->c, ctx->c, ctx->s[2]);
mpi_add (ctx->c, ctx->c, ctx->s[3]);
mpi_add (ctx->c, ctx->c, ctx->s[4]);
mpi_add (ctx->c, ctx->c, ctx->s[5]);
mpi_add (ctx->c, ctx->c, ctx->s[6]);
mpi_sub (ctx->c, ctx->c, ctx->s[7]);
mpi_sub (ctx->c, ctx->c, ctx->s[8]);
mpi_sub (ctx->c, ctx->c, ctx->s[9]);
while ( mpi_cmp (ctx->c, ctx->p ) >= 0 )
mpi_sub ( ctx->c, ctx->c, ctx->p );
while ( ctx->c->sign )
mpi_add ( ctx->c, ctx->c, ctx->p );
mpi_set (w, ctx->c);
}
else
#endif /*0*/
mpi_mulm (w, u, v, ctx->p);
}
static void
ec_powm (gcry_mpi_t w, const gcry_mpi_t b, const gcry_mpi_t e,
mpi_ec_t ctx)
{
mpi_powm (w, b, e, ctx->p);
}
static void
ec_invm (gcry_mpi_t x, gcry_mpi_t a, mpi_ec_t ctx)
{
mpi_invm (x, a, ctx->p);
}
/* This function returns a new context for elliptic curve based on the
field GF(p). P is the prime specifying thuis field, A is the first
coefficient.
This context needs to be released using _gcry_mpi_ec_free. */
mpi_ec_t
_gcry_mpi_ec_init (gcry_mpi_t p, gcry_mpi_t a)
{
int i;
mpi_ec_t ctx;
gcry_mpi_t tmp;
mpi_normalize (p);
mpi_normalize (a);
/* Fixme: Do we want to check some constraints? e.g.
a < p
*/
ctx = gcry_xcalloc (1, sizeof *ctx);
ctx->p = mpi_copy (p);
ctx->a = mpi_copy (a);
tmp = mpi_alloc_like (ctx->p);
mpi_sub_ui (tmp, ctx->p, 3);
ctx->a_is_pminus3 = !mpi_cmp (ctx->a, tmp);
mpi_free (tmp);
/* Allocate constants. */
ctx->one = mpi_alloc_set_ui (1);
ctx->two = mpi_alloc_set_ui (2);
ctx->three = mpi_alloc_set_ui (3);
ctx->four = mpi_alloc_set_ui (4);
ctx->eight = mpi_alloc_set_ui (8);
ctx->two_inv_p = mpi_alloc (0);
ec_invm (ctx->two_inv_p, ctx->two, ctx);
/* Allocate scratch variables. */
for (i=0; i< DIM(ctx->scratch); i++)
ctx->scratch[i] = mpi_alloc_like (ctx->p);
/* Prepare for fast reduction. */
/* FIXME: need a test for NIST values. However it does not gain us
any real advantage, for 384 bits it is actually slower than using
mpi_mulm. */
/* ctx->nist_nbits = mpi_get_nbits (ctx->p); */
/* if (ctx->nist_nbits == 192) */
/* { */
/* for (i=0; i < 4; i++) */
/* ctx->s[i] = mpi_new (192); */
/* ctx->c = mpi_new (192*2); */
/* } */
/* else if (ctx->nist_nbits == 384) */
/* { */
/* for (i=0; i < 10; i++) */
/* ctx->s[i] = mpi_new (384); */
/* ctx->c = mpi_new (384*2); */
/* } */
return ctx;
}
void
_gcry_mpi_ec_free (mpi_ec_t ctx)
{
int i;
if (!ctx)
return;
mpi_free (ctx->p);
mpi_free (ctx->a);
mpi_free (ctx->one);
mpi_free (ctx->two);
mpi_free (ctx->three);
mpi_free (ctx->four);
mpi_free (ctx->eight);
mpi_free (ctx->two_inv_p);
for (i=0; i< DIM(ctx->scratch); i++)
mpi_free (ctx->scratch[i]);
/* if (ctx->nist_nbits == 192) */
/* { */
/* for (i=0; i < 4; i++) */
/* mpi_free (ctx->s[i]); */
/* mpi_free (ctx->c); */
/* } */
/* else if (ctx->nist_nbits == 384) */
/* { */
/* for (i=0; i < 10; i++) */
/* mpi_free (ctx->s[i]); */
/* mpi_free (ctx->c); */
/* } */
gcry_free (ctx);
}
/* Compute the affine coordinates from the projective coordinates in
POINT. Set them into X and Y. If one coordinate is not required,
X or Y may be passed as NULL. CTX is the usual context. Returns: 0
on success or !0 if POINT is at infinity. */
int
_gcry_mpi_ec_get_affine (gcry_mpi_t x, gcry_mpi_t y, mpi_point_t *point,
mpi_ec_t ctx)
{
gcry_mpi_t z1, z2, z3;
if (!mpi_cmp_ui (point->z, 0))
return -1;
z1 = mpi_new (0);
z2 = mpi_new (0);
ec_invm (z1, point->z, ctx); /* z1 = z^(-1) mod p */
ec_mulm (z2, z1, z1, ctx); /* z2 = z^(-2) mod p */
if (x)
ec_mulm (x, point->x, z2, ctx);
if (y)
{
z3 = mpi_new (0);
ec_mulm (z3, z2, z1, ctx); /* z3 = z^(-3) mod p */
ec_mulm (y, point->y, z3, ctx);
mpi_free (z3);
}
mpi_free (z2);
mpi_free (z1);
return 0;
}
/* RESULT = 2 * POINT */
void
_gcry_mpi_ec_dup_point (mpi_point_t *result, mpi_point_t *point, mpi_ec_t ctx)
{
#define x3 (result->x)
#define y3 (result->y)
#define z3 (result->z)
#define t1 (ctx->scratch[0])
#define t2 (ctx->scratch[1])
#define t3 (ctx->scratch[2])
#define l1 (ctx->scratch[3])
#define l2 (ctx->scratch[4])
#define l3 (ctx->scratch[5])
if (!mpi_cmp_ui (point->y, 0) || !mpi_cmp_ui (point->z, 0))
{
/* P_y == 0 || P_z == 0 => [1:1:0] */
mpi_set_ui (x3, 1);
mpi_set_ui (y3, 1);
mpi_set_ui (z3, 0);
}
else
{
if (ctx->a_is_pminus3) /* Use the faster case. */
{
/* L1 = 3(X - Z^2)(X + Z^2) */
/* T1: used for Z^2. */
/* T2: used for the right term. */
ec_powm (t1, point->z, ctx->two, ctx);
ec_subm (l1, point->x, t1, ctx);
ec_mulm (l1, l1, ctx->three, ctx);
ec_addm (t2, point->x, t1, ctx);
ec_mulm (l1, l1, t2, ctx);
}
else /* Standard case. */
{
/* L1 = 3X^2 + aZ^4 */
/* T1: used for aZ^4. */
ec_powm (l1, point->x, ctx->two, ctx);
ec_mulm (l1, l1, ctx->three, ctx);
ec_powm (t1, point->z, ctx->four, ctx);
ec_mulm (t1, t1, ctx->a, ctx);
ec_addm (l1, l1, t1, ctx);
}
/* Z3 = 2YZ */
ec_mulm (z3, point->y, point->z, ctx);
ec_mulm (z3, z3, ctx->two, ctx);
/* L2 = 4XY^2 */
/* T2: used for Y2; required later. */
ec_powm (t2, point->y, ctx->two, ctx);
ec_mulm (l2, t2, point->x, ctx);
ec_mulm (l2, l2, ctx->four, ctx);
/* X3 = L1^2 - 2L2 */
/* T1: used for L2^2. */
ec_powm (x3, l1, ctx->two, ctx);
ec_mulm (t1, l2, ctx->two, ctx);
ec_subm (x3, x3, t1, ctx);
/* L3 = 8Y^4 */
/* T2: taken from above. */
ec_powm (t2, t2, ctx->two, ctx);
ec_mulm (l3, t2, ctx->eight, ctx);
/* Y3 = L1(L2 - X3) - L3 */
ec_subm (y3, l2, x3, ctx);
ec_mulm (y3, y3, l1, ctx);
ec_subm (y3, y3, l3, ctx);
}
#undef x3
#undef y3
#undef z3
#undef t1
#undef t2
#undef t3
#undef l1
#undef l2
#undef l3
}
/* RESULT = P1 + P2 */
void
_gcry_mpi_ec_add_points (mpi_point_t *result,
mpi_point_t *p1, mpi_point_t *p2,
mpi_ec_t ctx)
{
#define x1 (p1->x )
#define y1 (p1->y )
#define z1 (p1->z )
#define x2 (p2->x )
#define y2 (p2->y )
#define z2 (p2->z )
#define x3 (result->x)
#define y3 (result->y)
#define z3 (result->z)
#define l1 (ctx->scratch[0])
#define l2 (ctx->scratch[1])
#define l3 (ctx->scratch[2])
#define l4 (ctx->scratch[3])
#define l5 (ctx->scratch[4])
#define l6 (ctx->scratch[5])
#define l7 (ctx->scratch[6])
#define l8 (ctx->scratch[7])
#define l9 (ctx->scratch[8])
#define t1 (ctx->scratch[9])
#define t2 (ctx->scratch[10])
if ( (!mpi_cmp (x1, x2)) && (!mpi_cmp (y1, y2)) && (!mpi_cmp (z1, z2)) )
{
/* Same point; need to call the duplicate function. */
_gcry_mpi_ec_dup_point (result, p1, ctx);
}
else if (!mpi_cmp_ui (z1, 0))
{
/* P1 is at infinity. */
mpi_set (x3, p2->x);
mpi_set (y3, p2->y);
mpi_set (z3, p2->z);
}
else if (!mpi_cmp_ui (z2, 0))
{
/* P2 is at infinity. */
mpi_set (x3, p1->x);
mpi_set (y3, p1->y);
mpi_set (z3, p1->z);
}
else
{
int z1_is_one = !mpi_cmp_ui (z1, 1);
int z2_is_one = !mpi_cmp_ui (z2, 1);
/* l1 = x1 z2^2 */
/* l2 = x2 z1^2 */
if (z2_is_one)
mpi_set (l1, x1);
else
{
ec_powm (l1, z2, ctx->two, ctx);
ec_mulm (l1, l1, x1, ctx);
}
if (z1_is_one)
mpi_set (l2, x2);
else
{
ec_powm (l2, z1, ctx->two, ctx);
ec_mulm (l2, l2, x2, ctx);
}
/* l3 = l1 - l2 */
ec_subm (l3, l1, l2, ctx);
/* l4 = y1 z2^3 */
ec_powm (l4, z2, ctx->three, ctx);
ec_mulm (l4, l4, y1, ctx);
/* l5 = y2 z1^3 */
ec_powm (l5, z1, ctx->three, ctx);
ec_mulm (l5, l5, y2, ctx);
/* l6 = l4 - l5 */
ec_subm (l6, l4, l5, ctx);
if (!mpi_cmp_ui (l3, 0))
{
if (!mpi_cmp_ui (l6, 0))
{
/* P1 and P2 are the same - use duplicate function. */
_gcry_mpi_ec_dup_point (result, p1, ctx);
}
else
{
/* P1 is the inverse of P2. */
mpi_set_ui (x3, 1);
mpi_set_ui (y3, 1);
mpi_set_ui (z3, 0);
}
}
else
{
/* l7 = l1 + l2 */
ec_addm (l7, l1, l2, ctx);
/* l8 = l4 + l5 */
ec_addm (l8, l4, l5, ctx);
/* z3 = z1 z2 l3 */
ec_mulm (z3, z1, z2, ctx);
ec_mulm (z3, z3, l3, ctx);
/* x3 = l6^2 - l7 l3^2 */
ec_powm (t1, l6, ctx->two, ctx);
ec_powm (t2, l3, ctx->two, ctx);
ec_mulm (t2, t2, l7, ctx);
ec_subm (x3, t1, t2, ctx);
/* l9 = l7 l3^2 - 2 x3 */
ec_mulm (t1, x3, ctx->two, ctx);
ec_subm (l9, t2, t1, ctx);
/* y3 = (l9 l6 - l8 l3^3)/2 */
ec_mulm (l9, l9, l6, ctx);
ec_powm (t1, l3, ctx->three, ctx); /* fixme: Use saved value*/
ec_mulm (t1, t1, l8, ctx);
ec_subm (y3, l9, t1, ctx);
ec_mulm (y3, y3, ctx->two_inv_p, ctx);
}
}
#undef x1
#undef y1
#undef z1
#undef x2
#undef y2
#undef z2
#undef x3
#undef y3
#undef z3
#undef l1
#undef l2
#undef l3
#undef l4
#undef l5
#undef l6
#undef l7
#undef l8
#undef l9
#undef t1
#undef t2
}
/* Scalar point multiplication - the main function for ECC. If takes
an integer SCALAR and a POINT as well as the usual context CTX.
RESULT will be set to the resulting point. */
void
_gcry_mpi_ec_mul_point (mpi_point_t *result,
gcry_mpi_t scalar, mpi_point_t *point,
mpi_ec_t ctx)
{
#if 0
/* Simple left to right binary method. GECC Algorithm 3.27 */
unsigned int nbits;
int i;
nbits = mpi_get_nbits (scalar);
mpi_set_ui (result->x, 1);
mpi_set_ui (result->y, 1);
mpi_set_ui (result->z, 0);
for (i=nbits-1; i >= 0; i--)
{
_gcry_mpi_ec_dup_point (result, result, ctx);
if (mpi_test_bit (scalar, i) == 1)
_gcry_mpi_ec_add_points (result, result, point, ctx);
}
#else
gcry_mpi_t x1, y1, z1, k, h, yy;
unsigned int i, loops;
mpi_point_t p1, p2, p1inv;
x1 = mpi_alloc_like (ctx->p);
y1 = mpi_alloc_like (ctx->p);
h = mpi_alloc_like (ctx->p);
k = mpi_copy (scalar);
yy = mpi_copy (point->y);
if ( mpi_is_neg (k) )
{
k->sign = 0;
ec_invm (yy, yy, ctx);
}
if (!mpi_cmp_ui (point->z, 1))
{
mpi_set (x1, point->x);
mpi_set (y1, yy);
}
else
{
gcry_mpi_t z2, z3;
z2 = mpi_alloc_like (ctx->p);
z3 = mpi_alloc_like (ctx->p);
ec_mulm (z2, point->z, point->z, ctx);
ec_mulm (z3, point->z, z2, ctx);
ec_invm (z2, z2, ctx);
ec_mulm (x1, point->x, z2, ctx);
ec_invm (z3, z3, ctx);
ec_mulm (y1, yy, z3, ctx);
mpi_free (z2);
mpi_free (z3);
}
z1 = mpi_copy (ctx->one);
mpi_mul (h, k, ctx->three); /* h = 3k */
loops = mpi_get_nbits (h);
if (loops < 2)
{
/* If SCALAR is zero, the above mpi_mul sets H to zero and thus
LOOPs will be zero. To avoid an underflow of I in the main
loop we set LOOP to 2 and the result to (0,0,0). */
loops = 2;
mpi_clear (result->x);
mpi_clear (result->y);
mpi_clear (result->z);
}
else
{
mpi_set (result->x, point->x);
mpi_set (result->y, yy);
mpi_set (result->z, point->z);
}
mpi_free (yy); yy = NULL;
p1.x = x1; x1 = NULL;
p1.y = y1; y1 = NULL;
p1.z = z1; z1 = NULL;
point_init (&p2);
point_init (&p1inv);
for (i=loops-2; i > 0; i--)
{
_gcry_mpi_ec_dup_point (result, result, ctx);
if (mpi_test_bit (h, i) == 1 && mpi_test_bit (k, i) == 0)
{
point_set (&p2, result);
_gcry_mpi_ec_add_points (result, &p2, &p1, ctx);
}
if (mpi_test_bit (h, i) == 0 && mpi_test_bit (k, i) == 1)
{
point_set (&p2, result);
/* Invert point: y = p - y mod p */
point_set (&p1inv, &p1);
ec_subm (p1inv.y, ctx->p, p1inv.y, ctx);
_gcry_mpi_ec_add_points (result, &p2, &p1inv, ctx);
}
}
point_free (&p1);
point_free (&p2);
point_free (&p1inv);
mpi_free (h);
mpi_free (k);
#endif
}
|