1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
|
/* This file was automatically imported with
import_gcry.py. Please don't modify it */
#include <grub/dl.h>
GRUB_MOD_LICENSE ("GPLv3+");
/* Rijndael (AES) for GnuPG
* Copyright (C) 2000, 2001, 2002, 2003, 2007,
* 2008, 2011 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*******************************************************************
* The code here is based on the optimized implementation taken from
* http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ on Oct 2, 2000,
* which carries this notice:
*------------------------------------------
* rijndael-alg-fst.c v2.3 April '2000
*
* Optimised ANSI C code
*
* authors: v1.0: Antoon Bosselaers
* v2.0: Vincent Rijmen
* v2.3: Paulo Barreto
*
* This code is placed in the public domain.
*------------------------------------------
*
* The SP800-38a document is available at:
* http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
*
*/
#include "types.h" /* for byte and u32 typedefs */
#include "g10lib.h"
#include "cipher.h"
#define MAXKC (256/32)
#define MAXROUNDS 14
#define BLOCKSIZE (128/8)
/* Helper macro to force alignment to 16 bytes. */
#ifdef __GNUC__
# define ATTR_ALIGNED_16 __attribute__ ((aligned (16)))
#else
# define ATTR_ALIGNED_16
#endif
/* USE_PADLOCK indicates whether to compile the padlock specific
code. */
#undef USE_PADLOCK
#ifdef ENABLE_PADLOCK_SUPPORT
# if defined (__i386__) && SIZEOF_UNSIGNED_LONG == 4 && defined (__GNUC__)
# define USE_PADLOCK 1
# endif
#endif /*ENABLE_PADLOCK_SUPPORT*/
/* USE_AESNI inidicates whether to compile with Intel AES-NI code. We
need the vector-size attribute which seems to be available since
gcc 3. However, to be on the safe side we require at least gcc 4. */
#undef USE_AESNI
#ifdef ENABLE_AESNI_SUPPORT
# if defined (__i386__) && SIZEOF_UNSIGNED_LONG == 4 && __GNUC__ >= 4
# define USE_AESNI 1
# endif
#endif /* ENABLE_AESNI_SUPPORT */
#ifdef USE_AESNI
typedef int m128i_t __attribute__ ((__vector_size__ (16)));
#endif /*USE_AESNI*/
/* Define an u32 variant for the sake of gcc 4.4's strict aliasing. */
#if __GNUC__ > 4 || ( __GNUC__ == 4 && __GNUC_MINOR__ >= 4 )
typedef u32 __attribute__ ((__may_alias__)) u32_a_t;
#else
typedef u32 u32_a_t;
#endif
/* Our context object. */
typedef struct
{
/* The first fields are the keyschedule arrays. This is so that
they are aligned on a 16 byte boundary if using gcc. This
alignment is required for the AES-NI code and a good idea in any
case. The alignment is guaranteed due to the way cipher.c
allocates the space for the context. The PROPERLY_ALIGNED_TYPE
hack is used to force a minimal alignment if not using gcc of if
the alignment requirement is higher that 16 bytes. */
union
{
PROPERLY_ALIGNED_TYPE dummy;
byte keyschedule[MAXROUNDS+1][4][4];
#ifdef USE_PADLOCK
/* The key as passed to the padlock engine. It is only used if
the padlock engine is used (USE_PADLOCK, below). */
unsigned char padlock_key[16] __attribute__ ((aligned (16)));
#endif /*USE_PADLOCK*/
} u1;
union
{
PROPERLY_ALIGNED_TYPE dummy;
byte keyschedule[MAXROUNDS+1][4][4];
} u2;
int rounds; /* Key-length-dependent number of rounds. */
int decryption_prepared; /* The decryption key schedule is available. */
#ifdef USE_PADLOCK
int use_padlock; /* Padlock shall be used. */
#endif /*USE_PADLOCK*/
#ifdef USE_AESNI
int use_aesni; /* AES-NI shall be used. */
#endif /*USE_AESNI*/
} RIJNDAEL_context ATTR_ALIGNED_16;
/* Macros defining alias for the keyschedules. */
#define keyschenc u1.keyschedule
#define keyschdec u2.keyschedule
#define padlockkey u1.padlock_key
/* Two macros to be called prior and after the use of AESNI
instructions. There should be no external function calls between
the use of these macros. There purpose is to make sure that the
SSE regsiters are cleared and won't reveal any information about
the key or the data. */
#ifdef USE_AESNI
# define aesni_prepare() do { } while (0)
# define aesni_cleanup() \
do { asm volatile ("pxor %%xmm0, %%xmm0\n\t" \
"pxor %%xmm1, %%xmm1\n" :: ); \
} while (0)
# define aesni_cleanup_2_4() \
do { asm volatile ("pxor %%xmm2, %%xmm2\n\t" \
"pxor %%xmm3, %%xmm3\n" \
"pxor %%xmm4, %%xmm4\n":: ); \
} while (0)
#else
# define aesni_prepare() do { } while (0)
# define aesni_cleanup() do { } while (0)
#endif
/* All the numbers. */
#include "rijndael-tables.h"
/* Function prototypes. */
#ifdef USE_AESNI
/* We don't want to inline these functions to help gcc allocate enough
registers. */
static void do_aesni_ctr (const RIJNDAEL_context *ctx, unsigned char *ctr,
unsigned char *b, const unsigned char *a)
__attribute__ ((__noinline__));
static void do_aesni_ctr_4 (const RIJNDAEL_context *ctx, unsigned char *ctr,
unsigned char *b, const unsigned char *a)
__attribute__ ((__noinline__));
#endif /*USE_AESNI*/
/* Perform the key setup. */
static gcry_err_code_t
do_setkey (RIJNDAEL_context *ctx, const byte *key, const unsigned keylen)
{
static int initialized = 0;
static const char *selftest_failed=0;
int rounds;
int i,j, r, t, rconpointer = 0;
int KC;
union
{
PROPERLY_ALIGNED_TYPE dummy;
byte k[MAXKC][4];
} k;
#define k k.k
union
{
PROPERLY_ALIGNED_TYPE dummy;
byte tk[MAXKC][4];
} tk;
#define tk tk.tk
/* The on-the-fly self tests are only run in non-fips mode. In fips
mode explicit self-tests are required. Actually the on-the-fly
self-tests are not fully thread-safe and it might happen that a
failed self-test won't get noticed in another thread.
FIXME: We might want to have a central registry of succeeded
self-tests. */
if (!fips_mode () && !initialized)
{
initialized = 1;
selftest_failed = selftest ();
if (selftest_failed)
log_error ("%s\n", selftest_failed );
}
if (selftest_failed)
return GPG_ERR_SELFTEST_FAILED;
ctx->decryption_prepared = 0;
#ifdef USE_PADLOCK
ctx->use_padlock = 0;
#endif
#ifdef USE_AESNI
ctx->use_aesni = 0;
#endif
if( keylen == 128/8 )
{
rounds = 10;
KC = 4;
if (0)
;
#ifdef USE_PADLOCK
else if ((_gcry_get_hw_features () & HWF_PADLOCK_AES))
{
ctx->use_padlock = 1;
memcpy (ctx->padlockkey, key, keylen);
}
#endif
#ifdef USE_AESNI
else if ((_gcry_get_hw_features () & HWF_INTEL_AESNI))
{
ctx->use_aesni = 1;
}
#endif
}
else if ( keylen == 192/8 )
{
rounds = 12;
KC = 6;
if (0)
{
;
}
#ifdef USE_AESNI
else if ((_gcry_get_hw_features () & HWF_INTEL_AESNI))
{
ctx->use_aesni = 1;
}
#endif
}
else if ( keylen == 256/8 )
{
rounds = 14;
KC = 8;
if (0)
{
;
}
#ifdef USE_AESNI
else if ((_gcry_get_hw_features () & HWF_INTEL_AESNI))
{
ctx->use_aesni = 1;
}
#endif
}
else
return GPG_ERR_INV_KEYLEN;
ctx->rounds = rounds;
/* NB: We don't yet support Padlock hardware key generation. */
if (0)
;
#ifdef USE_AESNI_is_disabled_here
else if (ctx->use_aesni && ctx->rounds == 10)
{
/* Note: This code works for AES-128 but it is not much better
than using the standard key schedule. We disable it for
now and don't put any effort into implementing this for
AES-192 and AES-256. */
asm volatile ("movl %[key], %%esi\n\t"
"movdqu (%%esi), %%xmm1\n\t" /* xmm1 := key */
"movl %[ksch], %%esi\n\t"
"movdqa %%xmm1, (%%esi)\n\t" /* ksch[0] := xmm1 */
"aeskeygenassist $0x01, %%xmm1, %%xmm2\n\t"
"call .Lexpand128_%=\n\t"
"movdqa %%xmm1, 0x10(%%esi)\n\t" /* ksch[1] := xmm1 */
"aeskeygenassist $0x02, %%xmm1, %%xmm2\n\t"
"call .Lexpand128_%=\n\t"
"movdqa %%xmm1, 0x20(%%esi)\n\t" /* ksch[2] := xmm1 */
"aeskeygenassist $0x04, %%xmm1, %%xmm2\n\t"
"call .Lexpand128_%=\n\t"
"movdqa %%xmm1, 0x30(%%esi)\n\t" /* ksch[3] := xmm1 */
"aeskeygenassist $0x08, %%xmm1, %%xmm2\n\t"
"call .Lexpand128_%=\n\t"
"movdqa %%xmm1, 0x40(%%esi)\n\t" /* ksch[4] := xmm1 */
"aeskeygenassist $0x10, %%xmm1, %%xmm2\n\t"
"call .Lexpand128_%=\n\t"
"movdqa %%xmm1, 0x50(%%esi)\n\t" /* ksch[5] := xmm1 */
"aeskeygenassist $0x20, %%xmm1, %%xmm2\n\t"
"call .Lexpand128_%=\n\t"
"movdqa %%xmm1, 0x60(%%esi)\n\t" /* ksch[6] := xmm1 */
"aeskeygenassist $0x40, %%xmm1, %%xmm2\n\t"
"call .Lexpand128_%=\n\t"
"movdqa %%xmm1, 0x70(%%esi)\n\t" /* ksch[7] := xmm1 */
"aeskeygenassist $0x80, %%xmm1, %%xmm2\n\t"
"call .Lexpand128_%=\n\t"
"movdqa %%xmm1, 0x80(%%esi)\n\t" /* ksch[8] := xmm1 */
"aeskeygenassist $0x1b, %%xmm1, %%xmm2\n\t"
"call .Lexpand128_%=\n\t"
"movdqa %%xmm1, 0x90(%%esi)\n\t" /* ksch[9] := xmm1 */
"aeskeygenassist $0x36, %%xmm1, %%xmm2\n\t"
"call .Lexpand128_%=\n\t"
"movdqa %%xmm1, 0xa0(%%esi)\n\t" /* ksch[10] := xmm1 */
"jmp .Lleave%=\n"
".Lexpand128_%=:\n\t"
"pshufd $0xff, %%xmm2, %%xmm2\n\t"
"movdqa %%xmm1, %%xmm3\n\t"
"pslldq $4, %%xmm3\n\t"
"pxor %%xmm3, %%xmm1\n\t"
"pslldq $4, %%xmm3\n\t"
"pxor %%xmm3, %%xmm1\n\t"
"pslldq $4, %%xmm3\n\t"
"pxor %%xmm3, %%xmm2\n\t"
"pxor %%xmm2, %%xmm1\n\t"
"ret\n"
".Lleave%=:\n\t"
"pxor %%xmm1, %%xmm1\n\t"
"pxor %%xmm2, %%xmm2\n\t"
"pxor %%xmm3, %%xmm3\n"
:
: [key] "g" (key), [ksch] "g" (ctx->keyschenc)
: "%esi", "cc", "memory" );
}
#endif /*USE_AESNI*/
else
{
#define W (ctx->keyschenc)
for (i = 0; i < keylen; i++)
{
k[i >> 2][i & 3] = key[i];
}
for (j = KC-1; j >= 0; j--)
{
*((u32_a_t*)tk[j]) = *((u32_a_t*)k[j]);
}
r = 0;
t = 0;
/* Copy values into round key array. */
for (j = 0; (j < KC) && (r < rounds + 1); )
{
for (; (j < KC) && (t < 4); j++, t++)
{
*((u32_a_t*)W[r][t]) = *((u32_a_t*)tk[j]);
}
if (t == 4)
{
r++;
t = 0;
}
}
while (r < rounds + 1)
{
/* While not enough round key material calculated calculate
new values. */
tk[0][0] ^= S[tk[KC-1][1]];
tk[0][1] ^= S[tk[KC-1][2]];
tk[0][2] ^= S[tk[KC-1][3]];
tk[0][3] ^= S[tk[KC-1][0]];
tk[0][0] ^= rcon[rconpointer++];
if (KC != 8)
{
for (j = 1; j < KC; j++)
{
*((u32_a_t*)tk[j]) ^= *((u32_a_t*)tk[j-1]);
}
}
else
{
for (j = 1; j < KC/2; j++)
{
*((u32_a_t*)tk[j]) ^= *((u32_a_t*)tk[j-1]);
}
tk[KC/2][0] ^= S[tk[KC/2 - 1][0]];
tk[KC/2][1] ^= S[tk[KC/2 - 1][1]];
tk[KC/2][2] ^= S[tk[KC/2 - 1][2]];
tk[KC/2][3] ^= S[tk[KC/2 - 1][3]];
for (j = KC/2 + 1; j < KC; j++)
{
*((u32_a_t*)tk[j]) ^= *((u32_a_t*)tk[j-1]);
}
}
/* Copy values into round key array. */
for (j = 0; (j < KC) && (r < rounds + 1); )
{
for (; (j < KC) && (t < 4); j++, t++)
{
*((u32_a_t*)W[r][t]) = *((u32_a_t*)tk[j]);
}
if (t == 4)
{
r++;
t = 0;
}
}
}
#undef W
}
return 0;
#undef tk
#undef k
}
static gcry_err_code_t
rijndael_setkey (void *context, const byte *key, const unsigned keylen)
{
RIJNDAEL_context *ctx = context;
int rc = do_setkey (ctx, key, keylen);
_gcry_burn_stack ( 100 + 16*sizeof(int));
return rc;
}
/* Make a decryption key from an encryption key. */
static void
prepare_decryption( RIJNDAEL_context *ctx )
{
int r;
#ifdef USE_AESNI
if (ctx->use_aesni)
{
/* The AES-NI decrypt instructions use the Equivalent Inverse
Cipher, thus we can't use the the standard decrypt key
preparation. */
m128i_t *ekey = (m128i_t*)ctx->keyschenc;
m128i_t *dkey = (m128i_t*)ctx->keyschdec;
int rr;
dkey[0] = ekey[ctx->rounds];
for (r=1, rr=ctx->rounds-1; r < ctx->rounds; r++, rr--)
{
asm volatile
("movdqu %[ekey], %%xmm1\n\t"
/*"aesimc %%xmm1, %%xmm1\n\t"*/
".byte 0x66, 0x0f, 0x38, 0xdb, 0xc9\n\t"
"movdqu %%xmm1, %[dkey]"
: [dkey] "=m" (dkey[r])
: [ekey] "m" (ekey[rr]) );
}
dkey[r] = ekey[0];
}
else
#endif /*USE_AESNI*/
{
union
{
PROPERLY_ALIGNED_TYPE dummy;
byte *w;
} w;
#define w w.w
for (r=0; r < MAXROUNDS+1; r++ )
{
*((u32_a_t*)ctx->keyschdec[r][0]) = *((u32_a_t*)ctx->keyschenc[r][0]);
*((u32_a_t*)ctx->keyschdec[r][1]) = *((u32_a_t*)ctx->keyschenc[r][1]);
*((u32_a_t*)ctx->keyschdec[r][2]) = *((u32_a_t*)ctx->keyschenc[r][2]);
*((u32_a_t*)ctx->keyschdec[r][3]) = *((u32_a_t*)ctx->keyschenc[r][3]);
}
#define W (ctx->keyschdec)
for (r = 1; r < ctx->rounds; r++)
{
w = W[r][0];
*((u32_a_t*)w) = *((u32_a_t*)U1[w[0]]) ^ *((u32_a_t*)U2[w[1]])
^ *((u32_a_t*)U3[w[2]]) ^ *((u32_a_t*)U4[w[3]]);
w = W[r][1];
*((u32_a_t*)w) = *((u32_a_t*)U1[w[0]]) ^ *((u32_a_t*)U2[w[1]])
^ *((u32_a_t*)U3[w[2]]) ^ *((u32_a_t*)U4[w[3]]);
w = W[r][2];
*((u32_a_t*)w) = *((u32_a_t*)U1[w[0]]) ^ *((u32_a_t*)U2[w[1]])
^ *((u32_a_t*)U3[w[2]]) ^ *((u32_a_t*)U4[w[3]]);
w = W[r][3];
*((u32_a_t*)w) = *((u32_a_t*)U1[w[0]]) ^ *((u32_a_t*)U2[w[1]])
^ *((u32_a_t*)U3[w[2]]) ^ *((u32_a_t*)U4[w[3]]);
}
#undef W
#undef w
}
}
/* Encrypt one block. A and B need to be aligned on a 4 byte
boundary. A and B may be the same. */
static void
do_encrypt_aligned (const RIJNDAEL_context *ctx,
unsigned char *b, const unsigned char *a)
{
#define rk (ctx->keyschenc)
int rounds = ctx->rounds;
int r;
union
{
u32 tempu32[4]; /* Force correct alignment. */
byte temp[4][4];
} u;
*((u32_a_t*)u.temp[0]) = *((u32_a_t*)(a )) ^ *((u32_a_t*)rk[0][0]);
*((u32_a_t*)u.temp[1]) = *((u32_a_t*)(a+ 4)) ^ *((u32_a_t*)rk[0][1]);
*((u32_a_t*)u.temp[2]) = *((u32_a_t*)(a+ 8)) ^ *((u32_a_t*)rk[0][2]);
*((u32_a_t*)u.temp[3]) = *((u32_a_t*)(a+12)) ^ *((u32_a_t*)rk[0][3]);
*((u32_a_t*)(b )) = (*((u32_a_t*)T1[u.temp[0][0]])
^ *((u32_a_t*)T2[u.temp[1][1]])
^ *((u32_a_t*)T3[u.temp[2][2]])
^ *((u32_a_t*)T4[u.temp[3][3]]));
*((u32_a_t*)(b + 4)) = (*((u32_a_t*)T1[u.temp[1][0]])
^ *((u32_a_t*)T2[u.temp[2][1]])
^ *((u32_a_t*)T3[u.temp[3][2]])
^ *((u32_a_t*)T4[u.temp[0][3]]));
*((u32_a_t*)(b + 8)) = (*((u32_a_t*)T1[u.temp[2][0]])
^ *((u32_a_t*)T2[u.temp[3][1]])
^ *((u32_a_t*)T3[u.temp[0][2]])
^ *((u32_a_t*)T4[u.temp[1][3]]));
*((u32_a_t*)(b +12)) = (*((u32_a_t*)T1[u.temp[3][0]])
^ *((u32_a_t*)T2[u.temp[0][1]])
^ *((u32_a_t*)T3[u.temp[1][2]])
^ *((u32_a_t*)T4[u.temp[2][3]]));
for (r = 1; r < rounds-1; r++)
{
*((u32_a_t*)u.temp[0]) = *((u32_a_t*)(b )) ^ *((u32_a_t*)rk[r][0]);
*((u32_a_t*)u.temp[1]) = *((u32_a_t*)(b+ 4)) ^ *((u32_a_t*)rk[r][1]);
*((u32_a_t*)u.temp[2]) = *((u32_a_t*)(b+ 8)) ^ *((u32_a_t*)rk[r][2]);
*((u32_a_t*)u.temp[3]) = *((u32_a_t*)(b+12)) ^ *((u32_a_t*)rk[r][3]);
*((u32_a_t*)(b )) = (*((u32_a_t*)T1[u.temp[0][0]])
^ *((u32_a_t*)T2[u.temp[1][1]])
^ *((u32_a_t*)T3[u.temp[2][2]])
^ *((u32_a_t*)T4[u.temp[3][3]]));
*((u32_a_t*)(b + 4)) = (*((u32_a_t*)T1[u.temp[1][0]])
^ *((u32_a_t*)T2[u.temp[2][1]])
^ *((u32_a_t*)T3[u.temp[3][2]])
^ *((u32_a_t*)T4[u.temp[0][3]]));
*((u32_a_t*)(b + 8)) = (*((u32_a_t*)T1[u.temp[2][0]])
^ *((u32_a_t*)T2[u.temp[3][1]])
^ *((u32_a_t*)T3[u.temp[0][2]])
^ *((u32_a_t*)T4[u.temp[1][3]]));
*((u32_a_t*)(b +12)) = (*((u32_a_t*)T1[u.temp[3][0]])
^ *((u32_a_t*)T2[u.temp[0][1]])
^ *((u32_a_t*)T3[u.temp[1][2]])
^ *((u32_a_t*)T4[u.temp[2][3]]));
}
/* Last round is special. */
*((u32_a_t*)u.temp[0]) = *((u32_a_t*)(b )) ^ *((u32_a_t*)rk[rounds-1][0]);
*((u32_a_t*)u.temp[1]) = *((u32_a_t*)(b+ 4)) ^ *((u32_a_t*)rk[rounds-1][1]);
*((u32_a_t*)u.temp[2]) = *((u32_a_t*)(b+ 8)) ^ *((u32_a_t*)rk[rounds-1][2]);
*((u32_a_t*)u.temp[3]) = *((u32_a_t*)(b+12)) ^ *((u32_a_t*)rk[rounds-1][3]);
b[ 0] = T1[u.temp[0][0]][1];
b[ 1] = T1[u.temp[1][1]][1];
b[ 2] = T1[u.temp[2][2]][1];
b[ 3] = T1[u.temp[3][3]][1];
b[ 4] = T1[u.temp[1][0]][1];
b[ 5] = T1[u.temp[2][1]][1];
b[ 6] = T1[u.temp[3][2]][1];
b[ 7] = T1[u.temp[0][3]][1];
b[ 8] = T1[u.temp[2][0]][1];
b[ 9] = T1[u.temp[3][1]][1];
b[10] = T1[u.temp[0][2]][1];
b[11] = T1[u.temp[1][3]][1];
b[12] = T1[u.temp[3][0]][1];
b[13] = T1[u.temp[0][1]][1];
b[14] = T1[u.temp[1][2]][1];
b[15] = T1[u.temp[2][3]][1];
*((u32_a_t*)(b )) ^= *((u32_a_t*)rk[rounds][0]);
*((u32_a_t*)(b+ 4)) ^= *((u32_a_t*)rk[rounds][1]);
*((u32_a_t*)(b+ 8)) ^= *((u32_a_t*)rk[rounds][2]);
*((u32_a_t*)(b+12)) ^= *((u32_a_t*)rk[rounds][3]);
#undef rk
}
static void
do_encrypt (const RIJNDAEL_context *ctx,
unsigned char *bx, const unsigned char *ax)
{
/* BX and AX are not necessary correctly aligned. Thus we might
need to copy them here. We try to align to a 16 bytes. */
if (((size_t)ax & 0x0f) || ((size_t)bx & 0x0f))
{
union
{
u32 dummy[4];
byte a[16] ATTR_ALIGNED_16;
} a;
union
{
u32 dummy[4];
byte b[16] ATTR_ALIGNED_16;
} b;
memcpy (a.a, ax, 16);
do_encrypt_aligned (ctx, b.b, a.a);
memcpy (bx, b.b, 16);
}
else
{
do_encrypt_aligned (ctx, bx, ax);
}
}
/* Encrypt or decrypt one block using the padlock engine. A and B may
be the same. */
#ifdef USE_PADLOCK
static void
do_padlock (const RIJNDAEL_context *ctx, int decrypt_flag,
unsigned char *bx, const unsigned char *ax)
{
/* BX and AX are not necessary correctly aligned. Thus we need to
copy them here. */
unsigned char a[16] __attribute__ ((aligned (16)));
unsigned char b[16] __attribute__ ((aligned (16)));
unsigned int cword[4] __attribute__ ((aligned (16)));
/* The control word fields are:
127:12 11:10 9 8 7 6 5 4 3:0
RESERVED KSIZE CRYPT INTER KEYGN CIPHR ALIGN DGEST ROUND */
cword[0] = (ctx->rounds & 15); /* (The mask is just a safeguard.) */
cword[1] = 0;
cword[2] = 0;
cword[3] = 0;
if (decrypt_flag)
cword[0] |= 0x00000200;
memcpy (a, ax, 16);
asm volatile
("pushfl\n\t" /* Force key reload. */
"popfl\n\t"
"xchg %3, %%ebx\n\t" /* Load key. */
"movl $1, %%ecx\n\t" /* Init counter for just one block. */
".byte 0xf3, 0x0f, 0xa7, 0xc8\n\t" /* REP XSTORE ECB. */
"xchg %3, %%ebx\n" /* Restore GOT register. */
: /* No output */
: "S" (a), "D" (b), "d" (cword), "r" (ctx->padlockkey)
: "%ecx", "cc", "memory"
);
memcpy (bx, b, 16);
}
#endif /*USE_PADLOCK*/
#ifdef USE_AESNI
/* Encrypt one block using the Intel AES-NI instructions. A and B may
be the same; they need to be properly aligned to 16 bytes.
Our problem here is that gcc does not allow the "x" constraint for
SSE registers in asm unless you compile with -msse. The common
wisdom is to use a separate file for SSE instructions and build it
separately. This would require a lot of extra build system stuff,
similar to what we do in mpi/ for the asm stuff. What we do
instead is to use standard registers and a bit more of plain asm
which copies the data and key stuff to the SSE registers and later
back. If we decide to implement some block modes with parallelized
AES instructions, it might indeed be better to use plain asm ala
mpi/. */
static void
do_aesni_enc_aligned (const RIJNDAEL_context *ctx,
unsigned char *b, const unsigned char *a)
{
#define aesenc_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xc1\n\t"
#define aesenclast_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xc1\n\t"
/* Note: For now we relax the alignment requirement for A and B: It
does not make much difference because in many case we would need
to memcpy them to an extra buffer; using the movdqu is much faster
that memcpy and movdqa. For CFB we know that the IV is properly
aligned but that is a special case. We should better implement
CFB direct in asm. */
asm volatile ("movdqu %[src], %%xmm0\n\t" /* xmm0 := *a */
"movl %[key], %%esi\n\t" /* esi := keyschenc */
"movdqa (%%esi), %%xmm1\n\t" /* xmm1 := key[0] */
"pxor %%xmm1, %%xmm0\n\t" /* xmm0 ^= key[0] */
"movdqa 0x10(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x20(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x30(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x40(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x50(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x60(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x70(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x80(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x90(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xa0(%%esi), %%xmm1\n\t"
"cmp $10, %[rounds]\n\t"
"jz .Lenclast%=\n\t"
aesenc_xmm1_xmm0
"movdqa 0xb0(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xc0(%%esi), %%xmm1\n\t"
"cmp $12, %[rounds]\n\t"
"jz .Lenclast%=\n\t"
aesenc_xmm1_xmm0
"movdqa 0xd0(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xe0(%%esi), %%xmm1\n"
".Lenclast%=:\n\t"
aesenclast_xmm1_xmm0
"movdqu %%xmm0, %[dst]\n"
: [dst] "=m" (*b)
: [src] "m" (*a),
[key] "r" (ctx->keyschenc),
[rounds] "r" (ctx->rounds)
: "%esi", "cc", "memory");
#undef aesenc_xmm1_xmm0
#undef aesenclast_xmm1_xmm0
}
static void
do_aesni_dec_aligned (const RIJNDAEL_context *ctx,
unsigned char *b, const unsigned char *a)
{
#define aesdec_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xde, 0xc1\n\t"
#define aesdeclast_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdf, 0xc1\n\t"
asm volatile ("movdqu %[src], %%xmm0\n\t" /* xmm0 := *a */
"movl %[key], %%esi\n\t"
"movdqa (%%esi), %%xmm1\n\t"
"pxor %%xmm1, %%xmm0\n\t" /* xmm0 ^= key[0] */
"movdqa 0x10(%%esi), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0x20(%%esi), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0x30(%%esi), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0x40(%%esi), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0x50(%%esi), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0x60(%%esi), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0x70(%%esi), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0x80(%%esi), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0x90(%%esi), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0xa0(%%esi), %%xmm1\n\t"
"cmp $10, %[rounds]\n\t"
"jz .Ldeclast%=\n\t"
aesdec_xmm1_xmm0
"movdqa 0xb0(%%esi), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0xc0(%%esi), %%xmm1\n\t"
"cmp $12, %[rounds]\n\t"
"jz .Ldeclast%=\n\t"
aesdec_xmm1_xmm0
"movdqa 0xd0(%%esi), %%xmm1\n\t"
aesdec_xmm1_xmm0
"movdqa 0xe0(%%esi), %%xmm1\n"
".Ldeclast%=:\n\t"
aesdeclast_xmm1_xmm0
"movdqu %%xmm0, %[dst]\n"
: [dst] "=m" (*b)
: [src] "m" (*a),
[key] "r" (ctx->keyschdec),
[rounds] "r" (ctx->rounds)
: "%esi", "cc", "memory");
#undef aesdec_xmm1_xmm0
#undef aesdeclast_xmm1_xmm0
}
/* Perform a CFB encryption or decryption round using the
initialization vector IV and the input block A. Write the result
to the output block B and update IV. IV needs to be 16 byte
aligned. */
static void
do_aesni_cfb (const RIJNDAEL_context *ctx, int decrypt_flag,
unsigned char *iv, unsigned char *b, const unsigned char *a)
{
#define aesenc_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xc1\n\t"
#define aesenclast_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xc1\n\t"
asm volatile ("movdqa %[iv], %%xmm0\n\t" /* xmm0 := IV */
"movl %[key], %%esi\n\t" /* esi := keyschenc */
"movdqa (%%esi), %%xmm1\n\t" /* xmm1 := key[0] */
"pxor %%xmm1, %%xmm0\n\t" /* xmm0 ^= key[0] */
"movdqa 0x10(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x20(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x30(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x40(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x50(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x60(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x70(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x80(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x90(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xa0(%%esi), %%xmm1\n\t"
"cmp $10, %[rounds]\n\t"
"jz .Lenclast%=\n\t"
aesenc_xmm1_xmm0
"movdqa 0xb0(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xc0(%%esi), %%xmm1\n\t"
"cmp $12, %[rounds]\n\t"
"jz .Lenclast%=\n\t"
aesenc_xmm1_xmm0
"movdqa 0xd0(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xe0(%%esi), %%xmm1\n"
".Lenclast%=:\n\t"
aesenclast_xmm1_xmm0
"movdqu %[src], %%xmm1\n\t" /* Save input. */
"pxor %%xmm1, %%xmm0\n\t" /* xmm0 = input ^ IV */
"cmp $1, %[decrypt]\n\t"
"jz .Ldecrypt_%=\n\t"
"movdqa %%xmm0, %[iv]\n\t" /* [encrypt] Store IV. */
"jmp .Lleave_%=\n"
".Ldecrypt_%=:\n\t"
"movdqa %%xmm1, %[iv]\n" /* [decrypt] Store IV. */
".Lleave_%=:\n\t"
"movdqu %%xmm0, %[dst]\n" /* Store output. */
: [iv] "+m" (*iv), [dst] "=m" (*b)
: [src] "m" (*a),
[key] "g" (ctx->keyschenc),
[rounds] "g" (ctx->rounds),
[decrypt] "m" (decrypt_flag)
: "%esi", "cc", "memory");
#undef aesenc_xmm1_xmm0
#undef aesenclast_xmm1_xmm0
}
/* Perform a CTR encryption round using the counter CTR and the input
block A. Write the result to the output block B and update CTR.
CTR needs to be a 16 byte aligned little-endian value. */
static void
do_aesni_ctr (const RIJNDAEL_context *ctx,
unsigned char *ctr, unsigned char *b, const unsigned char *a)
{
#define aesenc_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xc1\n\t"
#define aesenclast_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xc1\n\t"
static unsigned char be_mask[16] __attribute__ ((aligned (16))) =
{ 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 };
asm volatile ("movdqa %[ctr], %%xmm0\n\t" /* xmm0, xmm2 := CTR */
"movaps %%xmm0, %%xmm2\n\t"
"mov $1, %%esi\n\t" /* xmm2++ (big-endian) */
"movd %%esi, %%xmm1\n\t"
"pshufb %[mask], %%xmm2\n\t"
"paddq %%xmm1, %%xmm2\n\t"
"pshufb %[mask], %%xmm2\n\t"
"movdqa %%xmm2, %[ctr]\n" /* Update CTR. */
"movl %[key], %%esi\n\t" /* esi := keyschenc */
"movdqa (%%esi), %%xmm1\n\t" /* xmm1 := key[0] */
"pxor %%xmm1, %%xmm0\n\t" /* xmm0 ^= key[0] */
"movdqa 0x10(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x20(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x30(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x40(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x50(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x60(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x70(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x80(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0x90(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xa0(%%esi), %%xmm1\n\t"
"cmp $10, %[rounds]\n\t"
"jz .Lenclast%=\n\t"
aesenc_xmm1_xmm0
"movdqa 0xb0(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xc0(%%esi), %%xmm1\n\t"
"cmp $12, %[rounds]\n\t"
"jz .Lenclast%=\n\t"
aesenc_xmm1_xmm0
"movdqa 0xd0(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
"movdqa 0xe0(%%esi), %%xmm1\n"
".Lenclast%=:\n\t"
aesenclast_xmm1_xmm0
"movdqu %[src], %%xmm1\n\t" /* xmm1 := input */
"pxor %%xmm1, %%xmm0\n\t" /* EncCTR ^= input */
"movdqu %%xmm0, %[dst]" /* Store EncCTR. */
: [ctr] "+m" (*ctr), [dst] "=m" (*b)
: [src] "m" (*a),
[key] "g" (ctx->keyschenc),
[rounds] "g" (ctx->rounds),
[mask] "m" (*be_mask)
: "%esi", "cc", "memory");
#undef aesenc_xmm1_xmm0
#undef aesenclast_xmm1_xmm0
}
/* Four blocks at a time variant of do_aesni_ctr. */
static void
do_aesni_ctr_4 (const RIJNDAEL_context *ctx,
unsigned char *ctr, unsigned char *b, const unsigned char *a)
{
#define aesenc_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xc1\n\t"
#define aesenc_xmm1_xmm2 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xd1\n\t"
#define aesenc_xmm1_xmm3 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xd9\n\t"
#define aesenc_xmm1_xmm4 ".byte 0x66, 0x0f, 0x38, 0xdc, 0xe1\n\t"
#define aesenclast_xmm1_xmm0 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xc1\n\t"
#define aesenclast_xmm1_xmm2 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xd1\n\t"
#define aesenclast_xmm1_xmm3 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xd9\n\t"
#define aesenclast_xmm1_xmm4 ".byte 0x66, 0x0f, 0x38, 0xdd, 0xe1\n\t"
static unsigned char be_mask[16] __attribute__ ((aligned (16))) =
{ 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 };
/* Register usage:
esi keyschedule
xmm0 CTR-0
xmm1 temp / round key
xmm2 CTR-1
xmm3 CTR-2
xmm4 CTR-3
xmm5 temp
*/
asm volatile ("movdqa %[ctr], %%xmm0\n\t" /* xmm0, xmm2 := CTR */
"movaps %%xmm0, %%xmm2\n\t"
"mov $1, %%esi\n\t" /* xmm1 := 1 */
"movd %%esi, %%xmm1\n\t"
"pshufb %[mask], %%xmm2\n\t" /* xmm2 := le(xmm2) */
"paddq %%xmm1, %%xmm2\n\t" /* xmm2++ */
"movaps %%xmm2, %%xmm3\n\t" /* xmm3 := xmm2 */
"paddq %%xmm1, %%xmm3\n\t" /* xmm3++ */
"movaps %%xmm3, %%xmm4\n\t" /* xmm4 := xmm3 */
"paddq %%xmm1, %%xmm4\n\t" /* xmm4++ */
"movaps %%xmm4, %%xmm5\n\t" /* xmm5 := xmm4 */
"paddq %%xmm1, %%xmm5\n\t" /* xmm5++ */
"pshufb %[mask], %%xmm2\n\t" /* xmm2 := be(xmm2) */
"pshufb %[mask], %%xmm3\n\t" /* xmm3 := be(xmm3) */
"pshufb %[mask], %%xmm4\n\t" /* xmm4 := be(xmm4) */
"pshufb %[mask], %%xmm5\n\t" /* xmm5 := be(xmm5) */
"movdqa %%xmm5, %[ctr]\n" /* Update CTR. */
"movl %[key], %%esi\n\t" /* esi := keyschenc */
"movdqa (%%esi), %%xmm1\n\t" /* xmm1 := key[0] */
"pxor %%xmm1, %%xmm0\n\t" /* xmm0 ^= key[0] */
"pxor %%xmm1, %%xmm2\n\t" /* xmm2 ^= key[0] */
"pxor %%xmm1, %%xmm3\n\t" /* xmm3 ^= key[0] */
"pxor %%xmm1, %%xmm4\n\t" /* xmm4 ^= key[0] */
"movdqa 0x10(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0x20(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0x30(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0x40(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0x50(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0x60(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0x70(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0x80(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0x90(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0xa0(%%esi), %%xmm1\n\t"
"cmp $10, %[rounds]\n\t"
"jz .Lenclast%=\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0xb0(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0xc0(%%esi), %%xmm1\n\t"
"cmp $12, %[rounds]\n\t"
"jz .Lenclast%=\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0xd0(%%esi), %%xmm1\n\t"
aesenc_xmm1_xmm0
aesenc_xmm1_xmm2
aesenc_xmm1_xmm3
aesenc_xmm1_xmm4
"movdqa 0xe0(%%esi), %%xmm1\n"
".Lenclast%=:\n\t"
aesenclast_xmm1_xmm0
aesenclast_xmm1_xmm2
aesenclast_xmm1_xmm3
aesenclast_xmm1_xmm4
"movdqu %[src], %%xmm1\n\t" /* Get block 1. */
"pxor %%xmm1, %%xmm0\n\t" /* EncCTR-1 ^= input */
"movdqu %%xmm0, %[dst]\n\t" /* Store block 1 */
"movdqu (16)%[src], %%xmm1\n\t" /* Get block 2. */
"pxor %%xmm1, %%xmm2\n\t" /* EncCTR-2 ^= input */
"movdqu %%xmm2, (16)%[dst]\n\t" /* Store block 2. */
"movdqu (32)%[src], %%xmm1\n\t" /* Get block 3. */
"pxor %%xmm1, %%xmm3\n\t" /* EncCTR-3 ^= input */
"movdqu %%xmm3, (32)%[dst]\n\t" /* Store block 3. */
"movdqu (48)%[src], %%xmm1\n\t" /* Get block 4. */
"pxor %%xmm1, %%xmm4\n\t" /* EncCTR-4 ^= input */
"movdqu %%xmm4, (48)%[dst]" /* Store block 4. */
: [ctr] "+m" (*ctr), [dst] "=m" (*b)
: [src] "m" (*a),
[key] "g" (ctx->keyschenc),
[rounds] "g" (ctx->rounds),
[mask] "m" (*be_mask)
: "%esi", "cc", "memory");
#undef aesenc_xmm1_xmm0
#undef aesenc_xmm1_xmm2
#undef aesenc_xmm1_xmm3
#undef aesenc_xmm1_xmm4
#undef aesenclast_xmm1_xmm0
#undef aesenclast_xmm1_xmm2
#undef aesenclast_xmm1_xmm3
#undef aesenclast_xmm1_xmm4
}
static void
do_aesni (RIJNDAEL_context *ctx, int decrypt_flag,
unsigned char *bx, const unsigned char *ax)
{
if (decrypt_flag)
{
if (!ctx->decryption_prepared )
{
prepare_decryption ( ctx );
ctx->decryption_prepared = 1;
}
do_aesni_dec_aligned (ctx, bx, ax);
}
else
do_aesni_enc_aligned (ctx, bx, ax);
}
#endif /*USE_AESNI*/
static void
rijndael_encrypt (void *context, byte *b, const byte *a)
{
RIJNDAEL_context *ctx = context;
if (0)
;
#ifdef USE_PADLOCK
else if (ctx->use_padlock)
{
do_padlock (ctx, 0, b, a);
_gcry_burn_stack (48 + 15 /* possible padding for alignment */);
}
#endif /*USE_PADLOCK*/
#ifdef USE_AESNI
else if (ctx->use_aesni)
{
aesni_prepare ();
do_aesni (ctx, 0, b, a);
aesni_cleanup ();
}
#endif /*USE_AESNI*/
else
{
do_encrypt (ctx, b, a);
_gcry_burn_stack (56 + 2*sizeof(int));
}
}
/* Bulk encryption of complete blocks in CFB mode. Caller needs to
make sure that IV is aligned on an unsigned long boundary. This
function is only intended for the bulk encryption feature of
cipher.c. */
/* Bulk encryption of complete blocks in CBC mode. Caller needs to
make sure that IV is aligned on an unsigned long boundary. This
function is only intended for the bulk encryption feature of
cipher.c. */
/* Bulk encryption of complete blocks in CTR mode. Caller needs to
make sure that CTR is aligned on a 16 byte boundary if AESNI; the
minimum alignment is for an u32. This function is only intended
for the bulk encryption feature of cipher.c. CTR is expected to be
of size BLOCKSIZE. */
/* Decrypt one block. A and B need to be aligned on a 4 byte boundary
and the decryption must have been prepared. A and B may be the
same. */
static void
do_decrypt_aligned (RIJNDAEL_context *ctx,
unsigned char *b, const unsigned char *a)
{
#define rk (ctx->keyschdec)
int rounds = ctx->rounds;
int r;
union
{
u32 tempu32[4]; /* Force correct alignment. */
byte temp[4][4];
} u;
*((u32_a_t*)u.temp[0]) = *((u32_a_t*)(a )) ^ *((u32_a_t*)rk[rounds][0]);
*((u32_a_t*)u.temp[1]) = *((u32_a_t*)(a+ 4)) ^ *((u32_a_t*)rk[rounds][1]);
*((u32_a_t*)u.temp[2]) = *((u32_a_t*)(a+ 8)) ^ *((u32_a_t*)rk[rounds][2]);
*((u32_a_t*)u.temp[3]) = *((u32_a_t*)(a+12)) ^ *((u32_a_t*)rk[rounds][3]);
*((u32_a_t*)(b )) = (*((u32_a_t*)T5[u.temp[0][0]])
^ *((u32_a_t*)T6[u.temp[3][1]])
^ *((u32_a_t*)T7[u.temp[2][2]])
^ *((u32_a_t*)T8[u.temp[1][3]]));
*((u32_a_t*)(b+ 4)) = (*((u32_a_t*)T5[u.temp[1][0]])
^ *((u32_a_t*)T6[u.temp[0][1]])
^ *((u32_a_t*)T7[u.temp[3][2]])
^ *((u32_a_t*)T8[u.temp[2][3]]));
*((u32_a_t*)(b+ 8)) = (*((u32_a_t*)T5[u.temp[2][0]])
^ *((u32_a_t*)T6[u.temp[1][1]])
^ *((u32_a_t*)T7[u.temp[0][2]])
^ *((u32_a_t*)T8[u.temp[3][3]]));
*((u32_a_t*)(b+12)) = (*((u32_a_t*)T5[u.temp[3][0]])
^ *((u32_a_t*)T6[u.temp[2][1]])
^ *((u32_a_t*)T7[u.temp[1][2]])
^ *((u32_a_t*)T8[u.temp[0][3]]));
for (r = rounds-1; r > 1; r--)
{
*((u32_a_t*)u.temp[0]) = *((u32_a_t*)(b )) ^ *((u32_a_t*)rk[r][0]);
*((u32_a_t*)u.temp[1]) = *((u32_a_t*)(b+ 4)) ^ *((u32_a_t*)rk[r][1]);
*((u32_a_t*)u.temp[2]) = *((u32_a_t*)(b+ 8)) ^ *((u32_a_t*)rk[r][2]);
*((u32_a_t*)u.temp[3]) = *((u32_a_t*)(b+12)) ^ *((u32_a_t*)rk[r][3]);
*((u32_a_t*)(b )) = (*((u32_a_t*)T5[u.temp[0][0]])
^ *((u32_a_t*)T6[u.temp[3][1]])
^ *((u32_a_t*)T7[u.temp[2][2]])
^ *((u32_a_t*)T8[u.temp[1][3]]));
*((u32_a_t*)(b+ 4)) = (*((u32_a_t*)T5[u.temp[1][0]])
^ *((u32_a_t*)T6[u.temp[0][1]])
^ *((u32_a_t*)T7[u.temp[3][2]])
^ *((u32_a_t*)T8[u.temp[2][3]]));
*((u32_a_t*)(b+ 8)) = (*((u32_a_t*)T5[u.temp[2][0]])
^ *((u32_a_t*)T6[u.temp[1][1]])
^ *((u32_a_t*)T7[u.temp[0][2]])
^ *((u32_a_t*)T8[u.temp[3][3]]));
*((u32_a_t*)(b+12)) = (*((u32_a_t*)T5[u.temp[3][0]])
^ *((u32_a_t*)T6[u.temp[2][1]])
^ *((u32_a_t*)T7[u.temp[1][2]])
^ *((u32_a_t*)T8[u.temp[0][3]]));
}
/* Last round is special. */
*((u32_a_t*)u.temp[0]) = *((u32_a_t*)(b )) ^ *((u32_a_t*)rk[1][0]);
*((u32_a_t*)u.temp[1]) = *((u32_a_t*)(b+ 4)) ^ *((u32_a_t*)rk[1][1]);
*((u32_a_t*)u.temp[2]) = *((u32_a_t*)(b+ 8)) ^ *((u32_a_t*)rk[1][2]);
*((u32_a_t*)u.temp[3]) = *((u32_a_t*)(b+12)) ^ *((u32_a_t*)rk[1][3]);
b[ 0] = S5[u.temp[0][0]];
b[ 1] = S5[u.temp[3][1]];
b[ 2] = S5[u.temp[2][2]];
b[ 3] = S5[u.temp[1][3]];
b[ 4] = S5[u.temp[1][0]];
b[ 5] = S5[u.temp[0][1]];
b[ 6] = S5[u.temp[3][2]];
b[ 7] = S5[u.temp[2][3]];
b[ 8] = S5[u.temp[2][0]];
b[ 9] = S5[u.temp[1][1]];
b[10] = S5[u.temp[0][2]];
b[11] = S5[u.temp[3][3]];
b[12] = S5[u.temp[3][0]];
b[13] = S5[u.temp[2][1]];
b[14] = S5[u.temp[1][2]];
b[15] = S5[u.temp[0][3]];
*((u32_a_t*)(b )) ^= *((u32_a_t*)rk[0][0]);
*((u32_a_t*)(b+ 4)) ^= *((u32_a_t*)rk[0][1]);
*((u32_a_t*)(b+ 8)) ^= *((u32_a_t*)rk[0][2]);
*((u32_a_t*)(b+12)) ^= *((u32_a_t*)rk[0][3]);
#undef rk
}
/* Decrypt one block. AX and BX may be the same. */
static void
do_decrypt (RIJNDAEL_context *ctx, byte *bx, const byte *ax)
{
if ( !ctx->decryption_prepared )
{
prepare_decryption ( ctx );
_gcry_burn_stack (64);
ctx->decryption_prepared = 1;
}
/* BX and AX are not necessary correctly aligned. Thus we might
need to copy them here. We try to align to a 16 bytes. */
if (((size_t)ax & 0x0f) || ((size_t)bx & 0x0f))
{
union
{
u32 dummy[4];
byte a[16] ATTR_ALIGNED_16;
} a;
union
{
u32 dummy[4];
byte b[16] ATTR_ALIGNED_16;
} b;
memcpy (a.a, ax, 16);
do_decrypt_aligned (ctx, b.b, a.a);
memcpy (bx, b.b, 16);
}
else
{
do_decrypt_aligned (ctx, bx, ax);
}
}
static void
rijndael_decrypt (void *context, byte *b, const byte *a)
{
RIJNDAEL_context *ctx = context;
if (0)
;
#ifdef USE_PADLOCK
else if (ctx->use_padlock)
{
do_padlock (ctx, 1, b, a);
_gcry_burn_stack (48 + 2*sizeof(int) /* FIXME */);
}
#endif /*USE_PADLOCK*/
#ifdef USE_AESNI
else if (ctx->use_aesni)
{
aesni_prepare ();
do_aesni (ctx, 1, b, a);
aesni_cleanup ();
}
#endif /*USE_AESNI*/
else
{
do_decrypt (ctx, b, a);
_gcry_burn_stack (56+2*sizeof(int));
}
}
/* Bulk decryption of complete blocks in CFB mode. Caller needs to
make sure that IV is aligned on an unisgned lonhg boundary. This
function is only intended for the bulk encryption feature of
cipher.c. */
/* Bulk decryption of complete blocks in CBC mode. Caller needs to
make sure that IV is aligned on an unsigned long boundary. This
function is only intended for the bulk encryption feature of
cipher.c. */
/* Run the self-tests for AES 128. Returns NULL on success. */
/* Run the self-tests for AES 192. Returns NULL on success. */
/* Run the self-tests for AES 256. Returns NULL on success. */
/* Run all the self-tests and return NULL on success. This function
is used for the on-the-fly self-tests. */
/* SP800-38a.pdf for AES-128. */
/* Complete selftest for AES-128 with all modes and driver code. */
/* Complete selftest for AES-192. */
/* Complete selftest for AES-256. */
/* Run a full self-test for ALGO and return 0 on success. */
static const char *rijndael_names[] =
{
"RIJNDAEL",
"AES128",
"AES-128",
NULL
};
static gcry_cipher_oid_spec_t rijndael_oids[] =
{
{ "2.16.840.1.101.3.4.1.1", GCRY_CIPHER_MODE_ECB },
{ "2.16.840.1.101.3.4.1.2", GCRY_CIPHER_MODE_CBC },
{ "2.16.840.1.101.3.4.1.3", GCRY_CIPHER_MODE_OFB },
{ "2.16.840.1.101.3.4.1.4", GCRY_CIPHER_MODE_CFB },
{ NULL }
};
gcry_cipher_spec_t _gcry_cipher_spec_aes =
{
"AES", rijndael_names, rijndael_oids, 16, 128, sizeof (RIJNDAEL_context),
rijndael_setkey, rijndael_encrypt, rijndael_decrypt
,
#ifdef GRUB_UTIL
.modname = "gcry_rijndael",
#endif
};
static const char *rijndael192_names[] =
{
"RIJNDAEL192",
"AES-192",
NULL
};
static gcry_cipher_oid_spec_t rijndael192_oids[] =
{
{ "2.16.840.1.101.3.4.1.21", GCRY_CIPHER_MODE_ECB },
{ "2.16.840.1.101.3.4.1.22", GCRY_CIPHER_MODE_CBC },
{ "2.16.840.1.101.3.4.1.23", GCRY_CIPHER_MODE_OFB },
{ "2.16.840.1.101.3.4.1.24", GCRY_CIPHER_MODE_CFB },
{ NULL }
};
gcry_cipher_spec_t _gcry_cipher_spec_aes192 =
{
"AES192", rijndael192_names, rijndael192_oids, 16, 192, sizeof (RIJNDAEL_context),
rijndael_setkey, rijndael_encrypt, rijndael_decrypt
,
#ifdef GRUB_UTIL
.modname = "gcry_rijndael",
#endif
};
static const char *rijndael256_names[] =
{
"RIJNDAEL256",
"AES-256",
NULL
};
static gcry_cipher_oid_spec_t rijndael256_oids[] =
{
{ "2.16.840.1.101.3.4.1.41", GCRY_CIPHER_MODE_ECB },
{ "2.16.840.1.101.3.4.1.42", GCRY_CIPHER_MODE_CBC },
{ "2.16.840.1.101.3.4.1.43", GCRY_CIPHER_MODE_OFB },
{ "2.16.840.1.101.3.4.1.44", GCRY_CIPHER_MODE_CFB },
{ NULL }
};
gcry_cipher_spec_t _gcry_cipher_spec_aes256 =
{
"AES256", rijndael256_names, rijndael256_oids, 16, 256,
sizeof (RIJNDAEL_context),
rijndael_setkey, rijndael_encrypt, rijndael_decrypt
,
#ifdef GRUB_UTIL
.modname = "gcry_rijndael",
#endif
};
GRUB_MOD_INIT(gcry_rijndael)
{
grub_cipher_register (&_gcry_cipher_spec_aes);
grub_cipher_register (&_gcry_cipher_spec_aes192);
grub_cipher_register (&_gcry_cipher_spec_aes256);
}
GRUB_MOD_FINI(gcry_rijndael)
{
grub_cipher_unregister (&_gcry_cipher_spec_aes);
grub_cipher_unregister (&_gcry_cipher_spec_aes192);
grub_cipher_unregister (&_gcry_cipher_spec_aes256);
}
|