1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
/* This file was automatically imported with
import_gcry.py. Please don't modify it */
#include <grub/dl.h>
GRUB_MOD_LICENSE ("GPLv3+");
/* rsa.c - RSA implementation
* Copyright (C) 1997, 1998, 1999 by Werner Koch (dd9jn)
* Copyright (C) 2000, 2001, 2002, 2003, 2008 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/* This code uses an algorithm protected by U.S. Patent #4,405,829
which expired on September 20, 2000. The patent holder placed that
patent into the public domain on Sep 6th, 2000.
*/
#include "g10lib.h"
#include "mpi.h"
#include "cipher.h"
typedef struct
{
gcry_mpi_t n; /* modulus */
gcry_mpi_t e; /* exponent */
} RSA_public_key;
typedef struct
{
gcry_mpi_t n; /* public modulus */
gcry_mpi_t e; /* public exponent */
gcry_mpi_t d; /* exponent */
gcry_mpi_t p; /* prime p. */
gcry_mpi_t q; /* prime q. */
gcry_mpi_t u; /* inverse of p mod q. */
} RSA_secret_key;
/* A sample 1024 bit RSA key used for the selftests. */
/* A sample 1024 bit RSA key used for the selftests (public only). */
static int check_secret_key (RSA_secret_key *sk);
static void public (gcry_mpi_t output, gcry_mpi_t input, RSA_public_key *skey);
/* Check that a freshly generated key actually works. Returns 0 on success. */
/* Callback used by the prime generation to test whether the exponent
is suitable. Returns 0 if the test has been passed. */
/****************
* Generate a key pair with a key of size NBITS.
* USE_E = 0 let Libcgrypt decide what exponent to use.
* = 1 request the use of a "secure" exponent; this is required by some
* specification to be 65537.
* > 2 Use this public exponent. If the given exponent
* is not odd one is internally added to it.
* TRANSIENT_KEY: If true, generate the primes using the standard RNG.
* Returns: 2 structures filled with all needed values
*/
/* Helper for generate_x931. */
/* Helper for generate_x931. */
/* Variant of the standard key generation code using the algorithm
from X9.31. Using this algorithm has the advantage that the
generation can be made deterministic which is required for CAVS
testing. */
/****************
* Test whether the secret key is valid.
* Returns: true if this is a valid key.
*/
static int
check_secret_key( RSA_secret_key *sk )
{
int rc;
gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(sk->p)*2 );
mpi_mul(temp, sk->p, sk->q );
rc = mpi_cmp( temp, sk->n );
mpi_free(temp);
return !rc;
}
/****************
* Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT.
*
* c = m^e mod n
*
* Where c is OUTPUT, m is INPUT and e,n are elements of PKEY.
*/
static void
public(gcry_mpi_t output, gcry_mpi_t input, RSA_public_key *pkey )
{
if( output == input ) /* powm doesn't like output and input the same */
{
gcry_mpi_t x = mpi_alloc( mpi_get_nlimbs(input)*2 );
mpi_powm( x, input, pkey->e, pkey->n );
mpi_set(output, x);
mpi_free(x);
}
else
mpi_powm( output, input, pkey->e, pkey->n );
}
#if 0
static void
stronger_key_check ( RSA_secret_key *skey )
{
gcry_mpi_t t = mpi_alloc_secure ( 0 );
gcry_mpi_t t1 = mpi_alloc_secure ( 0 );
gcry_mpi_t t2 = mpi_alloc_secure ( 0 );
gcry_mpi_t phi = mpi_alloc_secure ( 0 );
/* check that n == p * q */
mpi_mul( t, skey->p, skey->q);
if (mpi_cmp( t, skey->n) )
log_info ( "RSA Oops: n != p * q\n" );
/* check that p is less than q */
if( mpi_cmp( skey->p, skey->q ) > 0 )
{
log_info ("RSA Oops: p >= q - fixed\n");
_gcry_mpi_swap ( skey->p, skey->q);
}
/* check that e divides neither p-1 nor q-1 */
mpi_sub_ui(t, skey->p, 1 );
mpi_fdiv_r(t, t, skey->e );
if ( !mpi_cmp_ui( t, 0) )
log_info ( "RSA Oops: e divides p-1\n" );
mpi_sub_ui(t, skey->q, 1 );
mpi_fdiv_r(t, t, skey->e );
if ( !mpi_cmp_ui( t, 0) )
log_info ( "RSA Oops: e divides q-1\n" );
/* check that d is correct */
mpi_sub_ui( t1, skey->p, 1 );
mpi_sub_ui( t2, skey->q, 1 );
mpi_mul( phi, t1, t2 );
gcry_mpi_gcd(t, t1, t2);
mpi_fdiv_q(t, phi, t);
mpi_invm(t, skey->e, t );
if ( mpi_cmp(t, skey->d ) )
{
log_info ( "RSA Oops: d is wrong - fixed\n");
mpi_set (skey->d, t);
_gcry_log_mpidump (" fixed d", skey->d);
}
/* check for correctness of u */
mpi_invm(t, skey->p, skey->q );
if ( mpi_cmp(t, skey->u ) )
{
log_info ( "RSA Oops: u is wrong - fixed\n");
mpi_set (skey->u, t);
_gcry_log_mpidump (" fixed u", skey->u);
}
log_info ( "RSA secret key check finished\n");
mpi_free (t);
mpi_free (t1);
mpi_free (t2);
mpi_free (phi);
}
#endif
/****************
* Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT.
*
* m = c^d mod n
*
* Or faster:
*
* m1 = c ^ (d mod (p-1)) mod p
* m2 = c ^ (d mod (q-1)) mod q
* h = u * (m2 - m1) mod q
* m = m1 + h * p
*
* Where m is OUTPUT, c is INPUT and d,n,p,q,u are elements of SKEY.
*/
/* Perform RSA blinding. */
/* Undo RSA blinding. */
/*********************************************
************** interface ******************
*********************************************/
#define rsa_generate 0
static gcry_err_code_t
rsa_check_secret_key (int algo, gcry_mpi_t *skey)
{
gcry_err_code_t err = GPG_ERR_NO_ERROR;
RSA_secret_key sk;
(void)algo;
sk.n = skey[0];
sk.e = skey[1];
sk.d = skey[2];
sk.p = skey[3];
sk.q = skey[4];
sk.u = skey[5];
if (!sk.p || !sk.q || !sk.u)
err = GPG_ERR_NO_OBJ; /* To check the key we need the optional
parameters. */
else if (!check_secret_key (&sk))
err = GPG_ERR_BAD_SECKEY;
return err;
}
static gcry_err_code_t
rsa_encrypt (int algo, gcry_mpi_t *resarr, gcry_mpi_t data,
gcry_mpi_t *pkey, int flags)
{
RSA_public_key pk;
(void)algo;
(void)flags;
pk.n = pkey[0];
pk.e = pkey[1];
resarr[0] = mpi_alloc (mpi_get_nlimbs (pk.n));
public (resarr[0], data, &pk);
return GPG_ERR_NO_ERROR;
}
#define rsa_decrypt 0
#define rsa_sign 0
static gcry_err_code_t
rsa_verify (int algo, gcry_mpi_t hash, gcry_mpi_t *data, gcry_mpi_t *pkey,
int (*cmp) (void *opaque, gcry_mpi_t tmp),
void *opaquev)
{
RSA_public_key pk;
gcry_mpi_t result;
gcry_err_code_t rc;
(void)algo;
(void)cmp;
(void)opaquev;
pk.n = pkey[0];
pk.e = pkey[1];
result = gcry_mpi_new ( 160 );
public( result, data[0], &pk );
#ifdef IS_DEVELOPMENT_VERSION
if (DBG_CIPHER)
{
log_mpidump ("rsa verify result:", result );
log_mpidump (" hash:", hash );
}
#endif /*IS_DEVELOPMENT_VERSION*/
if (cmp)
rc = (*cmp) (opaquev, result);
else
rc = mpi_cmp (result, hash) ? GPG_ERR_BAD_SIGNATURE : GPG_ERR_NO_ERROR;
gcry_mpi_release (result);
return rc;
}
static unsigned int
rsa_get_nbits (int algo, gcry_mpi_t *pkey)
{
(void)algo;
return mpi_get_nbits (pkey[0]);
}
/* Compute a keygrip. MD is the hash context which we are going to
update. KEYPARAM is an S-expression with the key parameters, this
is usually a public key but may also be a secret key. An example
of such an S-expression is:
(rsa
(n #00B...#)
(e #010001#))
PKCS-15 says that for RSA only the modulus should be hashed -
however, it is not clear whether this is meant to use the raw bytes
(assuming this is an unsigned integer) or whether the DER required
0 should be prefixed. We hash the raw bytes. */
/*
Self-test section.
*/
/* Given an S-expression ENCR_DATA of the form:
(enc-val
(rsa
(a a-value)))
as returned by gcry_pk_decrypt, return the the A-VALUE. On error,
return NULL. */
/* Run a full self-test for ALGO and return 0 on success. */
static const char *rsa_names[] =
{
"rsa",
"openpgp-rsa",
"oid.1.2.840.113549.1.1.1",
NULL,
};
gcry_pk_spec_t _gcry_pubkey_spec_rsa =
{
"RSA", rsa_names,
"ne", "nedpqu", "a", "s", "n",
GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR,
rsa_generate,
rsa_check_secret_key,
rsa_encrypt,
rsa_decrypt,
rsa_sign,
rsa_verify,
rsa_get_nbits,
#ifdef GRUB_UTIL
.modname = "gcry_rsa",
#endif
};
GRUB_MOD_INIT(gcry_rsa)
{
grub_crypto_pk_rsa = &_gcry_pubkey_spec_rsa;
}
GRUB_MOD_FINI(gcry_rsa)
{
grub_crypto_pk_rsa = 0;
}
|