1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
|
/* Elgamal.c - Elgamal Public Key encryption
* Copyright (C) 1998, 2000, 2001, 2002, 2003,
* 2008 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*
* For a description of the algorithm, see:
* Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996.
* ISBN 0-471-11709-9. Pages 476 ff.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "g10lib.h"
#include "mpi.h"
#include "cipher.h"
typedef struct
{
gcry_mpi_t p; /* prime */
gcry_mpi_t g; /* group generator */
gcry_mpi_t y; /* g^x mod p */
} ELG_public_key;
typedef struct
{
gcry_mpi_t p; /* prime */
gcry_mpi_t g; /* group generator */
gcry_mpi_t y; /* g^x mod p */
gcry_mpi_t x; /* secret exponent */
} ELG_secret_key;
static int test_keys (ELG_secret_key *sk, unsigned int nbits, int nodie);
static gcry_mpi_t gen_k (gcry_mpi_t p, int small_k);
static void generate (ELG_secret_key *sk, unsigned nbits, gcry_mpi_t **factors);
static int check_secret_key (ELG_secret_key *sk);
static void do_encrypt (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
ELG_public_key *pkey);
static void decrypt (gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b,
ELG_secret_key *skey);
static void sign (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
ELG_secret_key *skey);
static int verify (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
ELG_public_key *pkey);
static void (*progress_cb) (void *, const char *, int, int, int);
static void *progress_cb_data;
void
_gcry_register_pk_elg_progress (void (*cb) (void *, const char *,
int, int, int),
void *cb_data)
{
progress_cb = cb;
progress_cb_data = cb_data;
}
static void
progress (int c)
{
if (progress_cb)
progress_cb (progress_cb_data, "pk_elg", c, 0, 0);
}
/****************
* Michael Wiener's table on subgroup sizes to match field sizes.
* (floating around somewhere, probably based on the paper from
* Eurocrypt 96, page 332)
*/
static unsigned int
wiener_map( unsigned int n )
{
static struct { unsigned int p_n, q_n; } t[] =
{ /* p q attack cost */
{ 512, 119 }, /* 9 x 10^17 */
{ 768, 145 }, /* 6 x 10^21 */
{ 1024, 165 }, /* 7 x 10^24 */
{ 1280, 183 }, /* 3 x 10^27 */
{ 1536, 198 }, /* 7 x 10^29 */
{ 1792, 212 }, /* 9 x 10^31 */
{ 2048, 225 }, /* 8 x 10^33 */
{ 2304, 237 }, /* 5 x 10^35 */
{ 2560, 249 }, /* 3 x 10^37 */
{ 2816, 259 }, /* 1 x 10^39 */
{ 3072, 269 }, /* 3 x 10^40 */
{ 3328, 279 }, /* 8 x 10^41 */
{ 3584, 288 }, /* 2 x 10^43 */
{ 3840, 296 }, /* 4 x 10^44 */
{ 4096, 305 }, /* 7 x 10^45 */
{ 4352, 313 }, /* 1 x 10^47 */
{ 4608, 320 }, /* 2 x 10^48 */
{ 4864, 328 }, /* 2 x 10^49 */
{ 5120, 335 }, /* 3 x 10^50 */
{ 0, 0 }
};
int i;
for(i=0; t[i].p_n; i++ )
{
if( n <= t[i].p_n )
return t[i].q_n;
}
/* Not in table - use an arbitrary high number. */
return n / 8 + 200;
}
static int
test_keys ( ELG_secret_key *sk, unsigned int nbits, int nodie )
{
ELG_public_key pk;
gcry_mpi_t test = gcry_mpi_new ( 0 );
gcry_mpi_t out1_a = gcry_mpi_new ( nbits );
gcry_mpi_t out1_b = gcry_mpi_new ( nbits );
gcry_mpi_t out2 = gcry_mpi_new ( nbits );
int failed = 0;
pk.p = sk->p;
pk.g = sk->g;
pk.y = sk->y;
gcry_mpi_randomize ( test, nbits, GCRY_WEAK_RANDOM );
do_encrypt ( out1_a, out1_b, test, &pk );
decrypt ( out2, out1_a, out1_b, sk );
if ( mpi_cmp( test, out2 ) )
failed |= 1;
sign ( out1_a, out1_b, test, sk );
if ( !verify( out1_a, out1_b, test, &pk ) )
failed |= 2;
gcry_mpi_release ( test );
gcry_mpi_release ( out1_a );
gcry_mpi_release ( out1_b );
gcry_mpi_release ( out2 );
if (failed && !nodie)
log_fatal ("Elgamal test key for %s %s failed\n",
(failed & 1)? "encrypt+decrypt":"",
(failed & 2)? "sign+verify":"");
if (failed && DBG_CIPHER)
log_debug ("Elgamal test key for %s %s failed\n",
(failed & 1)? "encrypt+decrypt":"",
(failed & 2)? "sign+verify":"");
return failed;
}
/****************
* Generate a random secret exponent k from prime p, so that k is
* relatively prime to p-1. With SMALL_K set, k will be selected for
* better encryption performance - this must never be used signing!
*/
static gcry_mpi_t
gen_k( gcry_mpi_t p, int small_k )
{
gcry_mpi_t k = mpi_alloc_secure( 0 );
gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(p) );
gcry_mpi_t p_1 = mpi_copy(p);
unsigned int orig_nbits = mpi_get_nbits(p);
unsigned int nbits, nbytes;
char *rndbuf = NULL;
if (small_k)
{
/* Using a k much lesser than p is sufficient for encryption and
* it greatly improves the encryption performance. We use
* Wiener's table and add a large safety margin. */
nbits = wiener_map( orig_nbits ) * 3 / 2;
if( nbits >= orig_nbits )
BUG();
}
else
nbits = orig_nbits;
nbytes = (nbits+7)/8;
if( DBG_CIPHER )
log_debug("choosing a random k ");
mpi_sub_ui( p_1, p, 1);
for(;;)
{
if( !rndbuf || nbits < 32 )
{
gcry_free(rndbuf);
rndbuf = gcry_random_bytes_secure( nbytes, GCRY_STRONG_RANDOM );
}
else
{
/* Change only some of the higher bits. We could improve
this by directly requesting more memory at the first call
to get_random_bytes() and use this the here maybe it is
easier to do this directly in random.c Anyway, it is
highly inlikely that we will ever reach this code. */
char *pp = gcry_random_bytes_secure( 4, GCRY_STRONG_RANDOM );
memcpy( rndbuf, pp, 4 );
gcry_free(pp);
}
_gcry_mpi_set_buffer( k, rndbuf, nbytes, 0 );
for(;;)
{
if( !(mpi_cmp( k, p_1 ) < 0) ) /* check: k < (p-1) */
{
if( DBG_CIPHER )
progress('+');
break; /* no */
}
if( !(mpi_cmp_ui( k, 0 ) > 0) ) /* check: k > 0 */
{
if( DBG_CIPHER )
progress('-');
break; /* no */
}
if (gcry_mpi_gcd( temp, k, p_1 ))
goto found; /* okay, k is relative prime to (p-1) */
mpi_add_ui( k, k, 1 );
if( DBG_CIPHER )
progress('.');
}
}
found:
gcry_free(rndbuf);
if( DBG_CIPHER )
progress('\n');
mpi_free(p_1);
mpi_free(temp);
return k;
}
/****************
* Generate a key pair with a key of size NBITS
* Returns: 2 structures filled with all needed values
* and an array with n-1 factors of (p-1)
*/
static void
generate ( ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t **ret_factors )
{
gcry_mpi_t p; /* the prime */
gcry_mpi_t p_min1;
gcry_mpi_t g;
gcry_mpi_t x; /* the secret exponent */
gcry_mpi_t y;
unsigned int qbits;
unsigned int xbits;
byte *rndbuf;
p_min1 = gcry_mpi_new ( nbits );
qbits = wiener_map( nbits );
if( qbits & 1 ) /* better have a even one */
qbits++;
g = mpi_alloc(1);
p = _gcry_generate_elg_prime( 0, nbits, qbits, g, ret_factors );
mpi_sub_ui(p_min1, p, 1);
/* Select a random number which has these properties:
* 0 < x < p-1
* This must be a very good random number because this is the
* secret part. The prime is public and may be shared anyway,
* so a random generator level of 1 is used for the prime.
*
* I don't see a reason to have a x of about the same size
* as the p. It should be sufficient to have one about the size
* of q or the later used k plus a large safety margin. Decryption
* will be much faster with such an x.
*/
xbits = qbits * 3 / 2;
if( xbits >= nbits )
BUG();
x = gcry_mpi_snew ( xbits );
if( DBG_CIPHER )
log_debug("choosing a random x of size %u", xbits );
rndbuf = NULL;
do
{
if( DBG_CIPHER )
progress('.');
if( rndbuf )
{ /* Change only some of the higher bits */
if( xbits < 16 ) /* should never happen ... */
{
gcry_free(rndbuf);
rndbuf = gcry_random_bytes_secure( (xbits+7)/8,
GCRY_VERY_STRONG_RANDOM );
}
else
{
char *r = gcry_random_bytes_secure( 2,
GCRY_VERY_STRONG_RANDOM );
memcpy(rndbuf, r, 2 );
gcry_free(r);
}
}
else
{
rndbuf = gcry_random_bytes_secure( (xbits+7)/8,
GCRY_VERY_STRONG_RANDOM );
}
_gcry_mpi_set_buffer( x, rndbuf, (xbits+7)/8, 0 );
mpi_clear_highbit( x, xbits+1 );
}
while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, p_min1 )<0 ) );
gcry_free(rndbuf);
y = gcry_mpi_new (nbits);
gcry_mpi_powm( y, g, x, p );
if( DBG_CIPHER )
{
progress('\n');
log_mpidump("elg p= ", p );
log_mpidump("elg g= ", g );
log_mpidump("elg y= ", y );
log_mpidump("elg x= ", x );
}
/* Copy the stuff to the key structures */
sk->p = p;
sk->g = g;
sk->y = y;
sk->x = x;
gcry_mpi_release ( p_min1 );
/* Now we can test our keys (this should never fail!) */
test_keys ( sk, nbits - 64, 0 );
}
/* Generate a key pair with a key of size NBITS not using a random
value for the secret key but the one given as X. This is useful to
implement a passphrase based decryption for a public key based
encryption. It has appliactions in backup systems.
Returns: A structure filled with all needed values and an array
with n-1 factors of (p-1). */
static gcry_err_code_t
generate_using_x (ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t x,
gcry_mpi_t **ret_factors )
{
gcry_mpi_t p; /* The prime. */
gcry_mpi_t p_min1; /* The prime minus 1. */
gcry_mpi_t g; /* The generator. */
gcry_mpi_t y; /* g^x mod p. */
unsigned int qbits;
unsigned int xbits;
sk->p = NULL;
sk->g = NULL;
sk->y = NULL;
sk->x = NULL;
/* Do a quick check to see whether X is suitable. */
xbits = mpi_get_nbits (x);
if ( xbits < 64 || xbits >= nbits )
return GPG_ERR_INV_VALUE;
p_min1 = gcry_mpi_new ( nbits );
qbits = wiener_map ( nbits );
if ( (qbits & 1) ) /* Better have an even one. */
qbits++;
g = mpi_alloc (1);
p = _gcry_generate_elg_prime ( 0, nbits, qbits, g, ret_factors );
mpi_sub_ui (p_min1, p, 1);
if (DBG_CIPHER)
log_debug ("using a supplied x of size %u", xbits );
if ( !(mpi_cmp_ui ( x, 0 ) > 0 && mpi_cmp ( x, p_min1 ) <0 ) )
{
gcry_mpi_release ( p_min1 );
gcry_mpi_release ( p );
gcry_mpi_release ( g );
return GPG_ERR_INV_VALUE;
}
y = gcry_mpi_new (nbits);
gcry_mpi_powm ( y, g, x, p );
if ( DBG_CIPHER )
{
progress ('\n');
log_mpidump ("elg p= ", p );
log_mpidump ("elg g= ", g );
log_mpidump ("elg y= ", y );
log_mpidump ("elg x= ", x );
}
/* Copy the stuff to the key structures */
sk->p = p;
sk->g = g;
sk->y = y;
sk->x = gcry_mpi_copy (x);
gcry_mpi_release ( p_min1 );
/* Now we can test our keys. */
if ( test_keys ( sk, nbits - 64, 1 ) )
{
gcry_mpi_release ( sk->p ); sk->p = NULL;
gcry_mpi_release ( sk->g ); sk->g = NULL;
gcry_mpi_release ( sk->y ); sk->y = NULL;
gcry_mpi_release ( sk->x ); sk->x = NULL;
return GPG_ERR_BAD_SECKEY;
}
return 0;
}
/****************
* Test whether the secret key is valid.
* Returns: if this is a valid key.
*/
static int
check_secret_key( ELG_secret_key *sk )
{
int rc;
gcry_mpi_t y = mpi_alloc( mpi_get_nlimbs(sk->y) );
gcry_mpi_powm( y, sk->g, sk->x, sk->p );
rc = !mpi_cmp( y, sk->y );
mpi_free( y );
return rc;
}
static void
do_encrypt(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey )
{
gcry_mpi_t k;
/* Note: maybe we should change the interface, so that it
* is possible to check that input is < p and return an
* error code.
*/
k = gen_k( pkey->p, 1 );
gcry_mpi_powm( a, pkey->g, k, pkey->p );
/* b = (y^k * input) mod p
* = ((y^k mod p) * (input mod p)) mod p
* and because input is < p
* = ((y^k mod p) * input) mod p
*/
gcry_mpi_powm( b, pkey->y, k, pkey->p );
gcry_mpi_mulm( b, b, input, pkey->p );
#if 0
if( DBG_CIPHER )
{
log_mpidump("elg encrypted y= ", pkey->y);
log_mpidump("elg encrypted p= ", pkey->p);
log_mpidump("elg encrypted k= ", k);
log_mpidump("elg encrypted M= ", input);
log_mpidump("elg encrypted a= ", a);
log_mpidump("elg encrypted b= ", b);
}
#endif
mpi_free(k);
}
static void
decrypt(gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b, ELG_secret_key *skey )
{
gcry_mpi_t t1 = mpi_alloc_secure( mpi_get_nlimbs( skey->p ) );
/* output = b/(a^x) mod p */
gcry_mpi_powm( t1, a, skey->x, skey->p );
mpi_invm( t1, t1, skey->p );
mpi_mulm( output, b, t1, skey->p );
#if 0
if( DBG_CIPHER )
{
log_mpidump("elg decrypted x= ", skey->x);
log_mpidump("elg decrypted p= ", skey->p);
log_mpidump("elg decrypted a= ", a);
log_mpidump("elg decrypted b= ", b);
log_mpidump("elg decrypted M= ", output);
}
#endif
mpi_free(t1);
}
/****************
* Make an Elgamal signature out of INPUT
*/
static void
sign(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_secret_key *skey )
{
gcry_mpi_t k;
gcry_mpi_t t = mpi_alloc( mpi_get_nlimbs(a) );
gcry_mpi_t inv = mpi_alloc( mpi_get_nlimbs(a) );
gcry_mpi_t p_1 = mpi_copy(skey->p);
/*
* b = (t * inv) mod (p-1)
* b = (t * inv(k,(p-1),(p-1)) mod (p-1)
* b = (((M-x*a) mod (p-1)) * inv(k,(p-1),(p-1))) mod (p-1)
*
*/
mpi_sub_ui(p_1, p_1, 1);
k = gen_k( skey->p, 0 /* no small K ! */ );
gcry_mpi_powm( a, skey->g, k, skey->p );
mpi_mul(t, skey->x, a );
mpi_subm(t, input, t, p_1 );
mpi_invm(inv, k, p_1 );
mpi_mulm(b, t, inv, p_1 );
#if 0
if( DBG_CIPHER )
{
log_mpidump("elg sign p= ", skey->p);
log_mpidump("elg sign g= ", skey->g);
log_mpidump("elg sign y= ", skey->y);
log_mpidump("elg sign x= ", skey->x);
log_mpidump("elg sign k= ", k);
log_mpidump("elg sign M= ", input);
log_mpidump("elg sign a= ", a);
log_mpidump("elg sign b= ", b);
}
#endif
mpi_free(k);
mpi_free(t);
mpi_free(inv);
mpi_free(p_1);
}
/****************
* Returns true if the signature composed of A and B is valid.
*/
static int
verify(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey )
{
int rc;
gcry_mpi_t t1;
gcry_mpi_t t2;
gcry_mpi_t base[4];
gcry_mpi_t ex[4];
if( !(mpi_cmp_ui( a, 0 ) > 0 && mpi_cmp( a, pkey->p ) < 0) )
return 0; /* assertion 0 < a < p failed */
t1 = mpi_alloc( mpi_get_nlimbs(a) );
t2 = mpi_alloc( mpi_get_nlimbs(a) );
#if 0
/* t1 = (y^a mod p) * (a^b mod p) mod p */
gcry_mpi_powm( t1, pkey->y, a, pkey->p );
gcry_mpi_powm( t2, a, b, pkey->p );
mpi_mulm( t1, t1, t2, pkey->p );
/* t2 = g ^ input mod p */
gcry_mpi_powm( t2, pkey->g, input, pkey->p );
rc = !mpi_cmp( t1, t2 );
#elif 0
/* t1 = (y^a mod p) * (a^b mod p) mod p */
base[0] = pkey->y; ex[0] = a;
base[1] = a; ex[1] = b;
base[2] = NULL; ex[2] = NULL;
mpi_mulpowm( t1, base, ex, pkey->p );
/* t2 = g ^ input mod p */
gcry_mpi_powm( t2, pkey->g, input, pkey->p );
rc = !mpi_cmp( t1, t2 );
#else
/* t1 = g ^ - input * y ^ a * a ^ b mod p */
mpi_invm(t2, pkey->g, pkey->p );
base[0] = t2 ; ex[0] = input;
base[1] = pkey->y; ex[1] = a;
base[2] = a; ex[2] = b;
base[3] = NULL; ex[3] = NULL;
mpi_mulpowm( t1, base, ex, pkey->p );
rc = !mpi_cmp_ui( t1, 1 );
#endif
mpi_free(t1);
mpi_free(t2);
return rc;
}
/*********************************************
************** interface ******************
*********************************************/
static gpg_err_code_t
elg_generate_ext (int algo, unsigned int nbits, unsigned long evalue,
const gcry_sexp_t genparms,
gcry_mpi_t *skey, gcry_mpi_t **retfactors,
gcry_sexp_t *r_extrainfo)
{
gpg_err_code_t ec;
ELG_secret_key sk;
gcry_mpi_t xvalue = NULL;
gcry_sexp_t l1;
(void)algo;
(void)evalue;
(void)r_extrainfo;
if (genparms)
{
/* Parse the optional xvalue element. */
l1 = gcry_sexp_find_token (genparms, "xvalue", 0);
if (l1)
{
xvalue = gcry_sexp_nth_mpi (l1, 1, 0);
gcry_sexp_release (l1);
if (!xvalue)
return GPG_ERR_BAD_MPI;
}
}
if (xvalue)
ec = generate_using_x (&sk, nbits, xvalue, retfactors);
else
{
generate (&sk, nbits, retfactors);
ec = 0;
}
skey[0] = sk.p;
skey[1] = sk.g;
skey[2] = sk.y;
skey[3] = sk.x;
return ec;
}
static gcry_err_code_t
elg_generate (int algo, unsigned int nbits, unsigned long evalue,
gcry_mpi_t *skey, gcry_mpi_t **retfactors)
{
ELG_secret_key sk;
(void)algo;
(void)evalue;
generate (&sk, nbits, retfactors);
skey[0] = sk.p;
skey[1] = sk.g;
skey[2] = sk.y;
skey[3] = sk.x;
return GPG_ERR_NO_ERROR;
}
static gcry_err_code_t
elg_check_secret_key (int algo, gcry_mpi_t *skey)
{
gcry_err_code_t err = GPG_ERR_NO_ERROR;
ELG_secret_key sk;
(void)algo;
if ((! skey[0]) || (! skey[1]) || (! skey[2]) || (! skey[3]))
err = GPG_ERR_BAD_MPI;
else
{
sk.p = skey[0];
sk.g = skey[1];
sk.y = skey[2];
sk.x = skey[3];
if (! check_secret_key (&sk))
err = GPG_ERR_BAD_SECKEY;
}
return err;
}
static gcry_err_code_t
elg_encrypt (int algo, gcry_mpi_t *resarr,
gcry_mpi_t data, gcry_mpi_t *pkey, int flags)
{
gcry_err_code_t err = GPG_ERR_NO_ERROR;
ELG_public_key pk;
(void)algo;
(void)flags;
if ((! data) || (! pkey[0]) || (! pkey[1]) || (! pkey[2]))
err = GPG_ERR_BAD_MPI;
else
{
pk.p = pkey[0];
pk.g = pkey[1];
pk.y = pkey[2];
resarr[0] = mpi_alloc (mpi_get_nlimbs (pk.p));
resarr[1] = mpi_alloc (mpi_get_nlimbs (pk.p));
do_encrypt (resarr[0], resarr[1], data, &pk);
}
return err;
}
static gcry_err_code_t
elg_decrypt (int algo, gcry_mpi_t *result,
gcry_mpi_t *data, gcry_mpi_t *skey, int flags)
{
gcry_err_code_t err = GPG_ERR_NO_ERROR;
ELG_secret_key sk;
(void)algo;
(void)flags;
if ((! data[0]) || (! data[1])
|| (! skey[0]) || (! skey[1]) || (! skey[2]) || (! skey[3]))
err = GPG_ERR_BAD_MPI;
else
{
sk.p = skey[0];
sk.g = skey[1];
sk.y = skey[2];
sk.x = skey[3];
*result = mpi_alloc_secure (mpi_get_nlimbs (sk.p));
decrypt (*result, data[0], data[1], &sk);
}
return err;
}
static gcry_err_code_t
elg_sign (int algo, gcry_mpi_t *resarr, gcry_mpi_t data, gcry_mpi_t *skey)
{
gcry_err_code_t err = GPG_ERR_NO_ERROR;
ELG_secret_key sk;
(void)algo;
if ((! data)
|| (! skey[0]) || (! skey[1]) || (! skey[2]) || (! skey[3]))
err = GPG_ERR_BAD_MPI;
else
{
sk.p = skey[0];
sk.g = skey[1];
sk.y = skey[2];
sk.x = skey[3];
resarr[0] = mpi_alloc (mpi_get_nlimbs (sk.p));
resarr[1] = mpi_alloc (mpi_get_nlimbs (sk.p));
sign (resarr[0], resarr[1], data, &sk);
}
return err;
}
static gcry_err_code_t
elg_verify (int algo, gcry_mpi_t hash, gcry_mpi_t *data, gcry_mpi_t *pkey,
int (*cmp) (void *, gcry_mpi_t), void *opaquev)
{
gcry_err_code_t err = GPG_ERR_NO_ERROR;
ELG_public_key pk;
(void)algo;
(void)cmp;
(void)opaquev;
if ((! data[0]) || (! data[1]) || (! hash)
|| (! pkey[0]) || (! pkey[1]) || (! pkey[2]))
err = GPG_ERR_BAD_MPI;
else
{
pk.p = pkey[0];
pk.g = pkey[1];
pk.y = pkey[2];
if (! verify (data[0], data[1], hash, &pk))
err = GPG_ERR_BAD_SIGNATURE;
}
return err;
}
static unsigned int
elg_get_nbits (int algo, gcry_mpi_t *pkey)
{
(void)algo;
return mpi_get_nbits (pkey[0]);
}
static const char *elg_names[] =
{
"elg",
"openpgp-elg",
"openpgp-elg-sig",
NULL,
};
gcry_pk_spec_t _gcry_pubkey_spec_elg =
{
"ELG", elg_names,
"pgy", "pgyx", "ab", "rs", "pgy",
GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR,
elg_generate,
elg_check_secret_key,
elg_encrypt,
elg_decrypt,
elg_sign,
elg_verify,
elg_get_nbits
};
pk_extra_spec_t _gcry_pubkey_extraspec_elg =
{
NULL,
elg_generate_ext,
NULL
};
|