1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
|
/* kyber-common.c - the Kyber key encapsulation mechanism (common part)
* Copyright (C) 2024 g10 Code GmbH
*
* This file was modified for use by Libgcrypt.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <https://www.gnu.org/licenses/>.
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* You can also use this file under the same licence of original code.
* SPDX-License-Identifier: CC0 OR Apache-2.0
*
*/
/*
Original code from:
Repository: https://github.com/pq-crystals/kyber.git
Branch: standard
Commit: 11d00ff1f20cfca1f72d819e5a45165c1e0a2816
Licence:
Public Domain (https://creativecommons.org/share-your-work/public-domain/cc0/);
or Apache 2.0 License (https://www.apache.org/licenses/LICENSE-2.0.html).
Authors:
Joppe Bos
Léo Ducas
Eike Kiltz
Tancrède Lepoint
Vadim Lyubashevsky
John Schanck
Peter Schwabe
Gregor Seiler
Damien Stehlé
Kyber Home: https://www.pq-crystals.org/kyber/
*/
/*
* From original code, following modification was made.
*
* - C++ style comments are changed to C-style.
*
* - Functions "poly_cbd_eta1" "poly_cbd_eta2" are removed.
*
* - Constant "zeta" is static, not available outside.
*
* - "poly_compress" and "poly_decompress" are now two variants _128
* and _160.
*
* - "poly_getnoise_eta1" is now two variants _2 and _3_4.
*
* - "poly_getnoise_eta2" directly uses "cbd2" function.
*/
/*************** kyber/ref/cbd.c */
/*************************************************
* Name: load32_littleendian
*
* Description: load 4 bytes into a 32-bit integer
* in little-endian order
*
* Arguments: - const uint8_t *x: pointer to input byte array
*
* Returns 32-bit unsigned integer loaded from x
**************************************************/
static uint32_t load32_littleendian(const uint8_t x[4])
{
uint32_t r;
r = (uint32_t)x[0];
r |= (uint32_t)x[1] << 8;
r |= (uint32_t)x[2] << 16;
r |= (uint32_t)x[3] << 24;
return r;
}
/*************************************************
* Name: load24_littleendian
*
* Description: load 3 bytes into a 32-bit integer
* in little-endian order.
* This function is only needed for Kyber-512
*
* Arguments: - const uint8_t *x: pointer to input byte array
*
* Returns 32-bit unsigned integer loaded from x (most significant byte is zero)
**************************************************/
#if !defined(KYBER_K) || KYBER_K == 2
static uint32_t load24_littleendian(const uint8_t x[3])
{
uint32_t r;
r = (uint32_t)x[0];
r |= (uint32_t)x[1] << 8;
r |= (uint32_t)x[2] << 16;
return r;
}
#endif
/*************************************************
* Name: cbd2
*
* Description: Given an array of uniformly random bytes, compute
* polynomial with coefficients distributed according to
* a centered binomial distribution with parameter eta=2
*
* Arguments: - poly *r: pointer to output polynomial
* - const uint8_t *buf: pointer to input byte array
**************************************************/
static void cbd2(poly *r, const uint8_t buf[2*KYBER_N/4])
{
unsigned int i,j;
uint32_t t,d;
int16_t a,b;
for(i=0;i<KYBER_N/8;i++) {
t = load32_littleendian(buf+4*i);
d = t & 0x55555555;
d += (t>>1) & 0x55555555;
for(j=0;j<8;j++) {
a = (d >> (4*j+0)) & 0x3;
b = (d >> (4*j+2)) & 0x3;
r->coeffs[8*i+j] = a - b;
}
}
}
/*************************************************
* Name: cbd3
*
* Description: Given an array of uniformly random bytes, compute
* polynomial with coefficients distributed according to
* a centered binomial distribution with parameter eta=3.
* This function is only needed for Kyber-512
*
* Arguments: - poly *r: pointer to output polynomial
* - const uint8_t *buf: pointer to input byte array
**************************************************/
#if !defined(KYBER_K) || KYBER_K == 2
static void cbd3(poly *r, const uint8_t buf[3*KYBER_N/4])
{
unsigned int i,j;
uint32_t t,d;
int16_t a,b;
for(i=0;i<KYBER_N/4;i++) {
t = load24_littleendian(buf+3*i);
d = t & 0x00249249;
d += (t>>1) & 0x00249249;
d += (t>>2) & 0x00249249;
for(j=0;j<4;j++) {
a = (d >> (6*j+0)) & 0x7;
b = (d >> (6*j+3)) & 0x7;
r->coeffs[4*i+j] = a - b;
}
}
}
#endif
/*************** kyber/ref/indcpa.c */
/*************************************************
* Name: rej_uniform
*
* Description: Run rejection sampling on uniform random bytes to generate
* uniform random integers mod q
*
* Arguments: - int16_t *r: pointer to output buffer
* - unsigned int len: requested number of 16-bit integers (uniform mod q)
* - const uint8_t *buf: pointer to input buffer (assumed to be uniformly random bytes)
* - unsigned int buflen: length of input buffer in bytes
*
* Returns number of sampled 16-bit integers (at most len)
**************************************************/
static unsigned int rej_uniform(int16_t *r,
unsigned int len,
const uint8_t *buf,
unsigned int buflen)
{
unsigned int ctr, pos;
uint16_t val0, val1;
ctr = pos = 0;
while(ctr < len && pos + 3 <= buflen) {
val0 = ((buf[pos+0] >> 0) | ((uint16_t)buf[pos+1] << 8)) & 0xFFF;
val1 = ((buf[pos+1] >> 4) | ((uint16_t)buf[pos+2] << 4)) & 0xFFF;
pos += 3;
if(val0 < KYBER_Q)
r[ctr++] = val0;
if(ctr < len && val1 < KYBER_Q)
r[ctr++] = val1;
}
return ctr;
}
/*************** kyber/ref/ntt.c */
/* Code to generate zetas and zetas_inv used in the number-theoretic transform:
#define KYBER_ROOT_OF_UNITY 17
static const uint8_t tree[128] = {
0, 64, 32, 96, 16, 80, 48, 112, 8, 72, 40, 104, 24, 88, 56, 120,
4, 68, 36, 100, 20, 84, 52, 116, 12, 76, 44, 108, 28, 92, 60, 124,
2, 66, 34, 98, 18, 82, 50, 114, 10, 74, 42, 106, 26, 90, 58, 122,
6, 70, 38, 102, 22, 86, 54, 118, 14, 78, 46, 110, 30, 94, 62, 126,
1, 65, 33, 97, 17, 81, 49, 113, 9, 73, 41, 105, 25, 89, 57, 121,
5, 69, 37, 101, 21, 85, 53, 117, 13, 77, 45, 109, 29, 93, 61, 125,
3, 67, 35, 99, 19, 83, 51, 115, 11, 75, 43, 107, 27, 91, 59, 123,
7, 71, 39, 103, 23, 87, 55, 119, 15, 79, 47, 111, 31, 95, 63, 127
};
void init_ntt() {
unsigned int i;
int16_t tmp[128];
tmp[0] = MONT;
for(i=1;i<128;i++)
tmp[i] = fqmul(tmp[i-1],MONT*KYBER_ROOT_OF_UNITY % KYBER_Q);
for(i=0;i<128;i++) {
zetas[i] = tmp[tree[i]];
if(zetas[i] > KYBER_Q/2)
zetas[i] -= KYBER_Q;
if(zetas[i] < -KYBER_Q/2)
zetas[i] += KYBER_Q;
}
}
*/
static const int16_t zetas[128] = {
-1044, -758, -359, -1517, 1493, 1422, 287, 202,
-171, 622, 1577, 182, 962, -1202, -1474, 1468,
573, -1325, 264, 383, -829, 1458, -1602, -130,
-681, 1017, 732, 608, -1542, 411, -205, -1571,
1223, 652, -552, 1015, -1293, 1491, -282, -1544,
516, -8, -320, -666, -1618, -1162, 126, 1469,
-853, -90, -271, 830, 107, -1421, -247, -951,
-398, 961, -1508, -725, 448, -1065, 677, -1275,
-1103, 430, 555, 843, -1251, 871, 1550, 105,
422, 587, 177, -235, -291, -460, 1574, 1653,
-246, 778, 1159, -147, -777, 1483, -602, 1119,
-1590, 644, -872, 349, 418, 329, -156, -75,
817, 1097, 603, 610, 1322, -1285, -1465, 384,
-1215, -136, 1218, -1335, -874, 220, -1187, -1659,
-1185, -1530, -1278, 794, -1510, -854, -870, 478,
-108, -308, 996, 991, 958, -1460, 1522, 1628
};
/*************************************************
* Name: fqmul
*
* Description: Multiplication followed by Montgomery reduction
*
* Arguments: - int16_t a: first factor
* - int16_t b: second factor
*
* Returns 16-bit integer congruent to a*b*R^{-1} mod q
**************************************************/
static int16_t fqmul(int16_t a, int16_t b) {
return montgomery_reduce((int32_t)a*b);
}
/*************************************************
* Name: ntt
*
* Description: Inplace number-theoretic transform (NTT) in Rq.
* input is in standard order, output is in bitreversed order
*
* Arguments: - int16_t r[256]: pointer to input/output vector of elements of Zq
**************************************************/
void ntt(int16_t r[256]) {
unsigned int len, start, j, k;
int16_t t, zeta;
k = 1;
for(len = 128; len >= 2; len >>= 1) {
for(start = 0; start < 256; start = j + len) {
zeta = zetas[k++];
for(j = start; j < start + len; j++) {
t = fqmul(zeta, r[j + len]);
r[j + len] = r[j] - t;
r[j] = r[j] + t;
}
}
}
}
/*************************************************
* Name: invntt_tomont
*
* Description: Inplace inverse number-theoretic transform in Rq and
* multiplication by Montgomery factor 2^16.
* Input is in bitreversed order, output is in standard order
*
* Arguments: - int16_t r[256]: pointer to input/output vector of elements of Zq
**************************************************/
void invntt(int16_t r[256]) {
unsigned int start, len, j, k;
int16_t t, zeta;
const int16_t f = 1441; /* mont^2/128 */
k = 127;
for(len = 2; len <= 128; len <<= 1) {
for(start = 0; start < 256; start = j + len) {
zeta = zetas[k--];
for(j = start; j < start + len; j++) {
t = r[j];
r[j] = barrett_reduce(t + r[j + len]);
r[j + len] = r[j + len] - t;
r[j + len] = fqmul(zeta, r[j + len]);
}
}
}
for(j = 0; j < 256; j++)
r[j] = fqmul(r[j], f);
}
/*************************************************
* Name: basemul
*
* Description: Multiplication of polynomials in Zq[X]/(X^2-zeta)
* used for multiplication of elements in Rq in NTT domain
*
* Arguments: - int16_t r[2]: pointer to the output polynomial
* - const int16_t a[2]: pointer to the first factor
* - const int16_t b[2]: pointer to the second factor
* - int16_t zeta: integer defining the reduction polynomial
**************************************************/
void basemul(int16_t r[2], const int16_t a[2], const int16_t b[2], int16_t zeta)
{
r[0] = fqmul(a[1], b[1]);
r[0] = fqmul(r[0], zeta);
r[0] += fqmul(a[0], b[0]);
r[1] = fqmul(a[0], b[1]);
r[1] += fqmul(a[1], b[0]);
}
/*************** kyber/ref/poly.c */
/*************************************************
* Name: poly_compress
*
* Description: Compression and subsequent serialization of a polynomial
*
* Arguments: - uint8_t *r: pointer to output byte array
* (of length KYBER_POLYCOMPRESSEDBYTES)
* - const poly *a: pointer to input polynomial
**************************************************/
#if !defined(KYBER_K) || KYBER_K == 2 || KYBER_K == 3
void poly_compress_128(uint8_t r[KYBER_POLYCOMPRESSEDBYTES_2_3], const poly *a)
{
unsigned int i,j;
int32_t u;
uint32_t d0;
uint8_t t[8];
for(i=0;i<KYBER_N/8;i++) {
for(j=0;j<8;j++) {
/* map to positive standard representatives */
u = a->coeffs[8*i+j];
u += (u >> 15) & KYBER_Q;
/* t[j] = ((((uint16_t)u << 4) + KYBER_Q/2)/KYBER_Q) & 15; */
d0 = u << 4;
d0 += 1665;
d0 *= 80635;
d0 >>= 28;
t[j] = d0 & 0xf;
}
r[0] = t[0] | (t[1] << 4);
r[1] = t[2] | (t[3] << 4);
r[2] = t[4] | (t[5] << 4);
r[3] = t[6] | (t[7] << 4);
r += 4;
}
}
#endif
#if !defined(KYBER_K) || KYBER_K == 4
void poly_compress_160(uint8_t r[KYBER_POLYCOMPRESSEDBYTES_4], const poly *a)
{
unsigned int i,j;
int32_t u;
uint32_t d0;
uint8_t t[8];
for(i=0;i<KYBER_N/8;i++) {
for(j=0;j<8;j++) {
/* map to positive standard representatives */
u = a->coeffs[8*i+j];
u += (u >> 15) & KYBER_Q;
/* t[j] = ((((uint32_t)u << 5) + KYBER_Q/2)/KYBER_Q) & 31; */
d0 = u << 5;
d0 += 1664;
d0 *= 40318;
d0 >>= 27;
t[j] = d0 & 0x1f;
}
r[0] = (t[0] >> 0) | (t[1] << 5);
r[1] = (t[1] >> 3) | (t[2] << 2) | (t[3] << 7);
r[2] = (t[3] >> 1) | (t[4] << 4);
r[3] = (t[4] >> 4) | (t[5] << 1) | (t[6] << 6);
r[4] = (t[6] >> 2) | (t[7] << 3);
r += 5;
}
}
#endif
/*************************************************
* Name: poly_decompress
*
* Description: De-serialization and subsequent decompression of a polynomial;
* approximate inverse of poly_compress
*
* Arguments: - poly *r: pointer to output polynomial
* - const uint8_t *a: pointer to input byte array
* (of length KYBER_POLYCOMPRESSEDBYTES bytes)
**************************************************/
#if !defined(KYBER_K) || KYBER_K == 2 || KYBER_K == 3
void poly_decompress_128(poly *r, const uint8_t a[KYBER_POLYCOMPRESSEDBYTES_2_3])
{
unsigned int i;
for(i=0;i<KYBER_N/2;i++) {
r->coeffs[2*i+0] = (((uint16_t)(a[0] & 15)*KYBER_Q) + 8) >> 4;
r->coeffs[2*i+1] = (((uint16_t)(a[0] >> 4)*KYBER_Q) + 8) >> 4;
a += 1;
}
}
#endif
#if !defined(KYBER_K) || KYBER_K == 4
void poly_decompress_160(poly *r, const uint8_t a[KYBER_POLYCOMPRESSEDBYTES_4])
{
unsigned int i;
unsigned int j;
uint8_t t[8];
for(i=0;i<KYBER_N/8;i++) {
t[0] = (a[0] >> 0);
t[1] = (a[0] >> 5) | (a[1] << 3);
t[2] = (a[1] >> 2);
t[3] = (a[1] >> 7) | (a[2] << 1);
t[4] = (a[2] >> 4) | (a[3] << 4);
t[5] = (a[3] >> 1);
t[6] = (a[3] >> 6) | (a[4] << 2);
t[7] = (a[4] >> 3);
a += 5;
for(j=0;j<8;j++)
r->coeffs[8*i+j] = ((uint32_t)(t[j] & 31)*KYBER_Q + 16) >> 5;
}
}
#endif
/*************************************************
* Name: poly_tobytes
*
* Description: Serialization of a polynomial
*
* Arguments: - uint8_t *r: pointer to output byte array
* (needs space for KYBER_POLYBYTES bytes)
* - const poly *a: pointer to input polynomial
**************************************************/
void poly_tobytes(uint8_t r[KYBER_POLYBYTES], const poly *a)
{
unsigned int i;
uint16_t t0, t1;
for(i=0;i<KYBER_N/2;i++) {
/* map to positive standard representatives */
t0 = a->coeffs[2*i];
t0 += ((int16_t)t0 >> 15) & KYBER_Q;
t1 = a->coeffs[2*i+1];
t1 += ((int16_t)t1 >> 15) & KYBER_Q;
r[3*i+0] = (t0 >> 0);
r[3*i+1] = (t0 >> 8) | (t1 << 4);
r[3*i+2] = (t1 >> 4);
}
}
/*************************************************
* Name: poly_frombytes
*
* Description: De-serialization of a polynomial;
* inverse of poly_tobytes
*
* Arguments: - poly *r: pointer to output polynomial
* - const uint8_t *a: pointer to input byte array
* (of KYBER_POLYBYTES bytes)
**************************************************/
void poly_frombytes(poly *r, const uint8_t a[KYBER_POLYBYTES])
{
unsigned int i;
for(i=0;i<KYBER_N/2;i++) {
r->coeffs[2*i] = ((a[3*i+0] >> 0) | ((uint16_t)a[3*i+1] << 8)) & 0xFFF;
r->coeffs[2*i+1] = ((a[3*i+1] >> 4) | ((uint16_t)a[3*i+2] << 4)) & 0xFFF;
}
}
/*************************************************
* Name: poly_frommsg
*
* Description: Convert 32-byte message to polynomial
*
* Arguments: - poly *r: pointer to output polynomial
* - const uint8_t *msg: pointer to input message
**************************************************/
void poly_frommsg(poly *r, const uint8_t msg[KYBER_INDCPA_MSGBYTES])
{
unsigned int i,j;
int16_t mask;
#if (KYBER_INDCPA_MSGBYTES != KYBER_N/8)
#error "KYBER_INDCPA_MSGBYTES must be equal to KYBER_N/8 bytes!"
#endif
for(i=0;i<KYBER_N/8;i++) {
for(j=0;j<8;j++) {
mask = -(int16_t)((msg[i] >> j)&1);
r->coeffs[8*i+j] = mask & ((KYBER_Q+1)/2);
}
}
}
/*************************************************
* Name: poly_tomsg
*
* Description: Convert polynomial to 32-byte message
*
* Arguments: - uint8_t *msg: pointer to output message
* - const poly *a: pointer to input polynomial
**************************************************/
void poly_tomsg(uint8_t msg[KYBER_INDCPA_MSGBYTES], const poly *a)
{
unsigned int i,j;
uint32_t t;
for(i=0;i<KYBER_N/8;i++) {
msg[i] = 0;
for(j=0;j<8;j++) {
t = a->coeffs[8*i+j];
/* t += ((int16_t)t >> 15) & KYBER_Q; */
/* t = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1; */
t <<= 1;
t += 1665;
t *= 80635;
t >>= 28;
t &= 1;
msg[i] |= t << j;
}
}
}
/*************************************************
* Name: poly_getnoise_eta1
*
* Description: Sample a polynomial deterministically from a seed and a nonce,
* with output polynomial close to centered binomial distribution
* with parameter KYBER_ETA1
*
* Arguments: - poly *r: pointer to output polynomial
* - const uint8_t *seed: pointer to input seed
* (of length KYBER_SYMBYTES bytes)
* - uint8_t nonce: one-byte input nonce
**************************************************/
#if !defined(KYBER_K) || KYBER_K == 2
void poly_getnoise_eta1_2(poly *r, const uint8_t seed[KYBER_SYMBYTES], uint8_t nonce)
{
uint8_t buf[KYBER_ETA1_2*KYBER_N/4];
prf(buf, sizeof(buf), seed, nonce);
cbd3(r, buf);
}
#endif
#if !defined(KYBER_K) || KYBER_K == 3 || KYBER_K == 4
void poly_getnoise_eta1_3_4(poly *r, const uint8_t seed[KYBER_SYMBYTES], uint8_t nonce)
{
uint8_t buf[KYBER_ETA1_3_4*KYBER_N/4];
prf(buf, sizeof(buf), seed, nonce);
cbd2(r, buf);
}
#endif
/*************************************************
* Name: poly_getnoise_eta2
*
* Description: Sample a polynomial deterministically from a seed and a nonce,
* with output polynomial close to centered binomial distribution
* with parameter KYBER_ETA2
*
* Arguments: - poly *r: pointer to output polynomial
* - const uint8_t *seed: pointer to input seed
* (of length KYBER_SYMBYTES bytes)
* - uint8_t nonce: one-byte input nonce
**************************************************/
void poly_getnoise_eta2(poly *r, const uint8_t seed[KYBER_SYMBYTES], uint8_t nonce)
{
uint8_t buf[KYBER_ETA2*KYBER_N/4];
prf(buf, sizeof(buf), seed, nonce);
cbd2(r, buf);
}
/*************************************************
* Name: poly_ntt
*
* Description: Computes negacyclic number-theoretic transform (NTT) of
* a polynomial in place;
* inputs assumed to be in normal order, output in bitreversed order
*
* Arguments: - uint16_t *r: pointer to in/output polynomial
**************************************************/
void poly_ntt(poly *r)
{
ntt(r->coeffs);
poly_reduce(r);
}
/*************************************************
* Name: poly_invntt_tomont
*
* Description: Computes inverse of negacyclic number-theoretic transform (NTT)
* of a polynomial in place;
* inputs assumed to be in bitreversed order, output in normal order
*
* Arguments: - uint16_t *a: pointer to in/output polynomial
**************************************************/
void poly_invntt_tomont(poly *r)
{
invntt(r->coeffs);
}
/*************************************************
* Name: poly_basemul_montgomery
*
* Description: Multiplication of two polynomials in NTT domain
*
* Arguments: - poly *r: pointer to output polynomial
* - const poly *a: pointer to first input polynomial
* - const poly *b: pointer to second input polynomial
**************************************************/
void poly_basemul_montgomery(poly *r, const poly *a, const poly *b)
{
unsigned int i;
for(i=0;i<KYBER_N/4;i++) {
basemul(&r->coeffs[4*i], &a->coeffs[4*i], &b->coeffs[4*i], zetas[64+i]);
basemul(&r->coeffs[4*i+2], &a->coeffs[4*i+2], &b->coeffs[4*i+2], -zetas[64+i]);
}
}
/*************************************************
* Name: poly_tomont
*
* Description: Inplace conversion of all coefficients of a polynomial
* from normal domain to Montgomery domain
*
* Arguments: - poly *r: pointer to input/output polynomial
**************************************************/
void poly_tomont(poly *r)
{
unsigned int i;
const int16_t f = (1ULL << 32) % KYBER_Q;
for(i=0;i<KYBER_N;i++)
r->coeffs[i] = montgomery_reduce((int32_t)r->coeffs[i]*f);
}
/*************************************************
* Name: poly_reduce
*
* Description: Applies Barrett reduction to all coefficients of a polynomial
* for details of the Barrett reduction see comments in reduce.c
*
* Arguments: - poly *r: pointer to input/output polynomial
**************************************************/
void poly_reduce(poly *r)
{
unsigned int i;
for(i=0;i<KYBER_N;i++)
r->coeffs[i] = barrett_reduce(r->coeffs[i]);
}
/*************************************************
* Name: poly_add
*
* Description: Add two polynomials; no modular reduction is performed
*
* Arguments: - poly *r: pointer to output polynomial
* - const poly *a: pointer to first input polynomial
* - const poly *b: pointer to second input polynomial
**************************************************/
void poly_add(poly *r, const poly *a, const poly *b)
{
unsigned int i;
for(i=0;i<KYBER_N;i++)
r->coeffs[i] = a->coeffs[i] + b->coeffs[i];
}
/*************************************************
* Name: poly_sub
*
* Description: Subtract two polynomials; no modular reduction is performed
*
* Arguments: - poly *r: pointer to output polynomial
* - const poly *a: pointer to first input polynomial
* - const poly *b: pointer to second input polynomial
**************************************************/
void poly_sub(poly *r, const poly *a, const poly *b)
{
unsigned int i;
for(i=0;i<KYBER_N;i++)
r->coeffs[i] = a->coeffs[i] - b->coeffs[i];
}
/*************** kyber/ref/reduce.c */
/*************************************************
* Name: montgomery_reduce
*
* Description: Montgomery reduction; given a 32-bit integer a, computes
* 16-bit integer congruent to a * R^-1 mod q, where R=2^16
*
* Arguments: - int32_t a: input integer to be reduced;
* has to be in {-q2^15,...,q2^15-1}
*
* Returns: integer in {-q+1,...,q-1} congruent to a * R^-1 modulo q.
**************************************************/
int16_t montgomery_reduce(int32_t a)
{
int16_t t;
t = (int16_t)a*QINV;
t = (a - (int32_t)t*KYBER_Q) >> 16;
return t;
}
/*************************************************
* Name: barrett_reduce
*
* Description: Barrett reduction; given a 16-bit integer a, computes
* centered representative congruent to a mod q in {-(q-1)/2,...,(q-1)/2}
*
* Arguments: - int16_t a: input integer to be reduced
*
* Returns: integer in {-(q-1)/2,...,(q-1)/2} congruent to a modulo q.
**************************************************/
int16_t barrett_reduce(int16_t a) {
int16_t t;
const int16_t v = ((1<<26) + KYBER_Q/2)/KYBER_Q;
t = ((int32_t)v*a + (1<<25)) >> 26;
t *= KYBER_Q;
return a - t;
}
|