File: kyber-common.c

package info (click to toggle)
grub2 2.14~git20250718.0e36779-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 60,688 kB
  • sloc: ansic: 541,811; asm: 68,074; sh: 9,803; cpp: 2,095; makefile: 1,895; python: 1,518; sed: 446; lex: 393; yacc: 268; awk: 85; lisp: 54; perl: 31
file content (766 lines) | stat: -rw-r--r-- 23,960 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
/* kyber-common.c - the Kyber key encapsulation mechanism (common part)
 * Copyright (C) 2024 g10 Code GmbH
 *
 * This file was modified for use by Libgcrypt.
 *
 * This file is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2.1 of
 * the License, or (at your option) any later version.
 *
 * This file is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this program; if not, see <https://www.gnu.org/licenses/>.
 * SPDX-License-Identifier: LGPL-2.1-or-later
 *
 * You can also use this file under the same licence of original code.
 * SPDX-License-Identifier: CC0 OR Apache-2.0
 *
 */
/*
  Original code from:

  Repository: https://github.com/pq-crystals/kyber.git
  Branch: standard
  Commit: 11d00ff1f20cfca1f72d819e5a45165c1e0a2816

  Licence:
  Public Domain (https://creativecommons.org/share-your-work/public-domain/cc0/);
  or Apache 2.0 License (https://www.apache.org/licenses/LICENSE-2.0.html).

  Authors:
        Joppe Bos
        Léo Ducas
        Eike Kiltz
        Tancrède Lepoint
        Vadim Lyubashevsky
        John Schanck
        Peter Schwabe
        Gregor Seiler
        Damien Stehlé

  Kyber Home: https://www.pq-crystals.org/kyber/
 */
/*
 * From original code, following modification was made.
 *
 * - C++ style comments are changed to C-style.
 *
 * - Functions "poly_cbd_eta1" "poly_cbd_eta2" are removed.
 *
 * - Constant "zeta" is static, not available outside.
 *
 * - "poly_compress" and "poly_decompress" are now two variants _128
 *   and _160.
 *
 * - "poly_getnoise_eta1" is now two variants _2 and _3_4.
 *
 * - "poly_getnoise_eta2" directly uses "cbd2" function.
 */

/*************** kyber/ref/cbd.c */

/*************************************************
* Name:        load32_littleendian
*
* Description: load 4 bytes into a 32-bit integer
*              in little-endian order
*
* Arguments:   - const uint8_t *x: pointer to input byte array
*
* Returns 32-bit unsigned integer loaded from x
**************************************************/
static uint32_t load32_littleendian(const uint8_t x[4])
{
  uint32_t r;
  r  = (uint32_t)x[0];
  r |= (uint32_t)x[1] << 8;
  r |= (uint32_t)x[2] << 16;
  r |= (uint32_t)x[3] << 24;
  return r;
}

/*************************************************
* Name:        load24_littleendian
*
* Description: load 3 bytes into a 32-bit integer
*              in little-endian order.
*              This function is only needed for Kyber-512
*
* Arguments:   - const uint8_t *x: pointer to input byte array
*
* Returns 32-bit unsigned integer loaded from x (most significant byte is zero)
**************************************************/
#if !defined(KYBER_K) || KYBER_K == 2
static uint32_t load24_littleendian(const uint8_t x[3])
{
  uint32_t r;
  r  = (uint32_t)x[0];
  r |= (uint32_t)x[1] << 8;
  r |= (uint32_t)x[2] << 16;
  return r;
}
#endif


/*************************************************
* Name:        cbd2
*
* Description: Given an array of uniformly random bytes, compute
*              polynomial with coefficients distributed according to
*              a centered binomial distribution with parameter eta=2
*
* Arguments:   - poly *r: pointer to output polynomial
*              - const uint8_t *buf: pointer to input byte array
**************************************************/
static void cbd2(poly *r, const uint8_t buf[2*KYBER_N/4])
{
  unsigned int i,j;
  uint32_t t,d;
  int16_t a,b;

  for(i=0;i<KYBER_N/8;i++) {
    t  = load32_littleendian(buf+4*i);
    d  = t & 0x55555555;
    d += (t>>1) & 0x55555555;

    for(j=0;j<8;j++) {
      a = (d >> (4*j+0)) & 0x3;
      b = (d >> (4*j+2)) & 0x3;
      r->coeffs[8*i+j] = a - b;
    }
  }
}

/*************************************************
* Name:        cbd3
*
* Description: Given an array of uniformly random bytes, compute
*              polynomial with coefficients distributed according to
*              a centered binomial distribution with parameter eta=3.
*              This function is only needed for Kyber-512
*
* Arguments:   - poly *r: pointer to output polynomial
*              - const uint8_t *buf: pointer to input byte array
**************************************************/
#if !defined(KYBER_K) || KYBER_K == 2
static void cbd3(poly *r, const uint8_t buf[3*KYBER_N/4])
{
  unsigned int i,j;
  uint32_t t,d;
  int16_t a,b;

  for(i=0;i<KYBER_N/4;i++) {
    t  = load24_littleendian(buf+3*i);
    d  = t & 0x00249249;
    d += (t>>1) & 0x00249249;
    d += (t>>2) & 0x00249249;

    for(j=0;j<4;j++) {
      a = (d >> (6*j+0)) & 0x7;
      b = (d >> (6*j+3)) & 0x7;
      r->coeffs[4*i+j] = a - b;
    }
  }
}
#endif

/*************** kyber/ref/indcpa.c */
/*************************************************
* Name:        rej_uniform
*
* Description: Run rejection sampling on uniform random bytes to generate
*              uniform random integers mod q
*
* Arguments:   - int16_t *r: pointer to output buffer
*              - unsigned int len: requested number of 16-bit integers (uniform mod q)
*              - const uint8_t *buf: pointer to input buffer (assumed to be uniformly random bytes)
*              - unsigned int buflen: length of input buffer in bytes
*
* Returns number of sampled 16-bit integers (at most len)
**************************************************/
static unsigned int rej_uniform(int16_t *r,
                                unsigned int len,
                                const uint8_t *buf,
                                unsigned int buflen)
{
  unsigned int ctr, pos;
  uint16_t val0, val1;

  ctr = pos = 0;
  while(ctr < len && pos + 3 <= buflen) {
    val0 = ((buf[pos+0] >> 0) | ((uint16_t)buf[pos+1] << 8)) & 0xFFF;
    val1 = ((buf[pos+1] >> 4) | ((uint16_t)buf[pos+2] << 4)) & 0xFFF;
    pos += 3;

    if(val0 < KYBER_Q)
      r[ctr++] = val0;
    if(ctr < len && val1 < KYBER_Q)
      r[ctr++] = val1;
  }

  return ctr;
}

/*************** kyber/ref/ntt.c */
/* Code to generate zetas and zetas_inv used in the number-theoretic transform:

#define KYBER_ROOT_OF_UNITY 17

static const uint8_t tree[128] = {
  0, 64, 32, 96, 16, 80, 48, 112, 8, 72, 40, 104, 24, 88, 56, 120,
  4, 68, 36, 100, 20, 84, 52, 116, 12, 76, 44, 108, 28, 92, 60, 124,
  2, 66, 34, 98, 18, 82, 50, 114, 10, 74, 42, 106, 26, 90, 58, 122,
  6, 70, 38, 102, 22, 86, 54, 118, 14, 78, 46, 110, 30, 94, 62, 126,
  1, 65, 33, 97, 17, 81, 49, 113, 9, 73, 41, 105, 25, 89, 57, 121,
  5, 69, 37, 101, 21, 85, 53, 117, 13, 77, 45, 109, 29, 93, 61, 125,
  3, 67, 35, 99, 19, 83, 51, 115, 11, 75, 43, 107, 27, 91, 59, 123,
  7, 71, 39, 103, 23, 87, 55, 119, 15, 79, 47, 111, 31, 95, 63, 127
};

void init_ntt() {
  unsigned int i;
  int16_t tmp[128];

  tmp[0] = MONT;
  for(i=1;i<128;i++)
    tmp[i] = fqmul(tmp[i-1],MONT*KYBER_ROOT_OF_UNITY % KYBER_Q);

  for(i=0;i<128;i++) {
    zetas[i] = tmp[tree[i]];
    if(zetas[i] > KYBER_Q/2)
      zetas[i] -= KYBER_Q;
    if(zetas[i] < -KYBER_Q/2)
      zetas[i] += KYBER_Q;
  }
}
*/

static const int16_t zetas[128] = {
  -1044,  -758,  -359, -1517,  1493,  1422,   287,   202,
   -171,   622,  1577,   182,   962, -1202, -1474,  1468,
    573, -1325,   264,   383,  -829,  1458, -1602,  -130,
   -681,  1017,   732,   608, -1542,   411,  -205, -1571,
   1223,   652,  -552,  1015, -1293,  1491,  -282, -1544,
    516,    -8,  -320,  -666, -1618, -1162,   126,  1469,
   -853,   -90,  -271,   830,   107, -1421,  -247,  -951,
   -398,   961, -1508,  -725,   448, -1065,   677, -1275,
  -1103,   430,   555,   843, -1251,   871,  1550,   105,
    422,   587,   177,  -235,  -291,  -460,  1574,  1653,
   -246,   778,  1159,  -147,  -777,  1483,  -602,  1119,
  -1590,   644,  -872,   349,   418,   329,  -156,   -75,
    817,  1097,   603,   610,  1322, -1285, -1465,   384,
  -1215,  -136,  1218, -1335,  -874,   220, -1187, -1659,
  -1185, -1530, -1278,   794, -1510,  -854,  -870,   478,
   -108,  -308,   996,   991,   958, -1460,  1522,  1628
};

/*************************************************
* Name:        fqmul
*
* Description: Multiplication followed by Montgomery reduction
*
* Arguments:   - int16_t a: first factor
*              - int16_t b: second factor
*
* Returns 16-bit integer congruent to a*b*R^{-1} mod q
**************************************************/
static int16_t fqmul(int16_t a, int16_t b) {
  return montgomery_reduce((int32_t)a*b);
}

/*************************************************
* Name:        ntt
*
* Description: Inplace number-theoretic transform (NTT) in Rq.
*              input is in standard order, output is in bitreversed order
*
* Arguments:   - int16_t r[256]: pointer to input/output vector of elements of Zq
**************************************************/
void ntt(int16_t r[256]) {
  unsigned int len, start, j, k;
  int16_t t, zeta;

  k = 1;
  for(len = 128; len >= 2; len >>= 1) {
    for(start = 0; start < 256; start = j + len) {
      zeta = zetas[k++];
      for(j = start; j < start + len; j++) {
        t = fqmul(zeta, r[j + len]);
        r[j + len] = r[j] - t;
        r[j] = r[j] + t;
      }
    }
  }
}

/*************************************************
* Name:        invntt_tomont
*
* Description: Inplace inverse number-theoretic transform in Rq and
*              multiplication by Montgomery factor 2^16.
*              Input is in bitreversed order, output is in standard order
*
* Arguments:   - int16_t r[256]: pointer to input/output vector of elements of Zq
**************************************************/
void invntt(int16_t r[256]) {
  unsigned int start, len, j, k;
  int16_t t, zeta;
  const int16_t f = 1441; /* mont^2/128 */

  k = 127;
  for(len = 2; len <= 128; len <<= 1) {
    for(start = 0; start < 256; start = j + len) {
      zeta = zetas[k--];
      for(j = start; j < start + len; j++) {
        t = r[j];
        r[j] = barrett_reduce(t + r[j + len]);
        r[j + len] = r[j + len] - t;
        r[j + len] = fqmul(zeta, r[j + len]);
      }
    }
  }

  for(j = 0; j < 256; j++)
    r[j] = fqmul(r[j], f);
}

/*************************************************
* Name:        basemul
*
* Description: Multiplication of polynomials in Zq[X]/(X^2-zeta)
*              used for multiplication of elements in Rq in NTT domain
*
* Arguments:   - int16_t r[2]: pointer to the output polynomial
*              - const int16_t a[2]: pointer to the first factor
*              - const int16_t b[2]: pointer to the second factor
*              - int16_t zeta: integer defining the reduction polynomial
**************************************************/
void basemul(int16_t r[2], const int16_t a[2], const int16_t b[2], int16_t zeta)
{
  r[0]  = fqmul(a[1], b[1]);
  r[0]  = fqmul(r[0], zeta);
  r[0] += fqmul(a[0], b[0]);
  r[1]  = fqmul(a[0], b[1]);
  r[1] += fqmul(a[1], b[0]);
}
/*************** kyber/ref/poly.c */

/*************************************************
* Name:        poly_compress
*
* Description: Compression and subsequent serialization of a polynomial
*
* Arguments:   - uint8_t *r: pointer to output byte array
*                            (of length KYBER_POLYCOMPRESSEDBYTES)
*              - const poly *a: pointer to input polynomial
**************************************************/
#if !defined(KYBER_K) || KYBER_K == 2 || KYBER_K == 3
void poly_compress_128(uint8_t r[KYBER_POLYCOMPRESSEDBYTES_2_3], const poly *a)
{
  unsigned int i,j;
  int32_t u;
  uint32_t d0;
  uint8_t t[8];

  for(i=0;i<KYBER_N/8;i++) {
    for(j=0;j<8;j++) {
      /* map to positive standard representatives */
      u  = a->coeffs[8*i+j];
      u += (u >> 15) & KYBER_Q;
/*    t[j] = ((((uint16_t)u << 4) + KYBER_Q/2)/KYBER_Q) & 15; */
      d0 = u << 4;
      d0 += 1665;
      d0 *= 80635;
      d0 >>= 28;
      t[j] = d0 & 0xf;
    }

    r[0] = t[0] | (t[1] << 4);
    r[1] = t[2] | (t[3] << 4);
    r[2] = t[4] | (t[5] << 4);
    r[3] = t[6] | (t[7] << 4);
    r += 4;
  }
}
#endif

#if !defined(KYBER_K) || KYBER_K == 4
void poly_compress_160(uint8_t r[KYBER_POLYCOMPRESSEDBYTES_4], const poly *a)
{
  unsigned int i,j;
  int32_t u;
  uint32_t d0;
  uint8_t t[8];

  for(i=0;i<KYBER_N/8;i++) {
    for(j=0;j<8;j++) {
      /* map to positive standard representatives */
      u  = a->coeffs[8*i+j];
      u += (u >> 15) & KYBER_Q;
/*    t[j] = ((((uint32_t)u << 5) + KYBER_Q/2)/KYBER_Q) & 31; */
      d0 = u << 5;
      d0 += 1664;
      d0 *= 40318;
      d0 >>= 27;
      t[j] = d0 & 0x1f;
    }

    r[0] = (t[0] >> 0) | (t[1] << 5);
    r[1] = (t[1] >> 3) | (t[2] << 2) | (t[3] << 7);
    r[2] = (t[3] >> 1) | (t[4] << 4);
    r[3] = (t[4] >> 4) | (t[5] << 1) | (t[6] << 6);
    r[4] = (t[6] >> 2) | (t[7] << 3);
    r += 5;
  }
}
#endif

/*************************************************
* Name:        poly_decompress
*
* Description: De-serialization and subsequent decompression of a polynomial;
*              approximate inverse of poly_compress
*
* Arguments:   - poly *r: pointer to output polynomial
*              - const uint8_t *a: pointer to input byte array
*                                  (of length KYBER_POLYCOMPRESSEDBYTES bytes)
**************************************************/
#if !defined(KYBER_K) || KYBER_K == 2 || KYBER_K == 3
void poly_decompress_128(poly *r, const uint8_t a[KYBER_POLYCOMPRESSEDBYTES_2_3])
{
  unsigned int i;
  for(i=0;i<KYBER_N/2;i++) {
    r->coeffs[2*i+0] = (((uint16_t)(a[0] & 15)*KYBER_Q) + 8) >> 4;
    r->coeffs[2*i+1] = (((uint16_t)(a[0] >> 4)*KYBER_Q) + 8) >> 4;
    a += 1;
  }
}
#endif

#if !defined(KYBER_K) || KYBER_K == 4
void poly_decompress_160(poly *r, const uint8_t a[KYBER_POLYCOMPRESSEDBYTES_4])
{
  unsigned int i;
  unsigned int j;
  uint8_t t[8];
  for(i=0;i<KYBER_N/8;i++) {
    t[0] = (a[0] >> 0);
    t[1] = (a[0] >> 5) | (a[1] << 3);
    t[2] = (a[1] >> 2);
    t[3] = (a[1] >> 7) | (a[2] << 1);
    t[4] = (a[2] >> 4) | (a[3] << 4);
    t[5] = (a[3] >> 1);
    t[6] = (a[3] >> 6) | (a[4] << 2);
    t[7] = (a[4] >> 3);
    a += 5;

    for(j=0;j<8;j++)
      r->coeffs[8*i+j] = ((uint32_t)(t[j] & 31)*KYBER_Q + 16) >> 5;
  }
}
#endif

/*************************************************
* Name:        poly_tobytes
*
* Description: Serialization of a polynomial
*
* Arguments:   - uint8_t *r: pointer to output byte array
*                            (needs space for KYBER_POLYBYTES bytes)
*              - const poly *a: pointer to input polynomial
**************************************************/
void poly_tobytes(uint8_t r[KYBER_POLYBYTES], const poly *a)
{
  unsigned int i;
  uint16_t t0, t1;

  for(i=0;i<KYBER_N/2;i++) {
    /* map to positive standard representatives */
    t0  = a->coeffs[2*i];
    t0 += ((int16_t)t0 >> 15) & KYBER_Q;
    t1 = a->coeffs[2*i+1];
    t1 += ((int16_t)t1 >> 15) & KYBER_Q;
    r[3*i+0] = (t0 >> 0);
    r[3*i+1] = (t0 >> 8) | (t1 << 4);
    r[3*i+2] = (t1 >> 4);
  }
}

/*************************************************
* Name:        poly_frombytes
*
* Description: De-serialization of a polynomial;
*              inverse of poly_tobytes
*
* Arguments:   - poly *r: pointer to output polynomial
*              - const uint8_t *a: pointer to input byte array
*                                  (of KYBER_POLYBYTES bytes)
**************************************************/
void poly_frombytes(poly *r, const uint8_t a[KYBER_POLYBYTES])
{
  unsigned int i;
  for(i=0;i<KYBER_N/2;i++) {
    r->coeffs[2*i]   = ((a[3*i+0] >> 0) | ((uint16_t)a[3*i+1] << 8)) & 0xFFF;
    r->coeffs[2*i+1] = ((a[3*i+1] >> 4) | ((uint16_t)a[3*i+2] << 4)) & 0xFFF;
  }
}

/*************************************************
* Name:        poly_frommsg
*
* Description: Convert 32-byte message to polynomial
*
* Arguments:   - poly *r: pointer to output polynomial
*              - const uint8_t *msg: pointer to input message
**************************************************/
void poly_frommsg(poly *r, const uint8_t msg[KYBER_INDCPA_MSGBYTES])
{
  unsigned int i,j;
  int16_t mask;

#if (KYBER_INDCPA_MSGBYTES != KYBER_N/8)
#error "KYBER_INDCPA_MSGBYTES must be equal to KYBER_N/8 bytes!"
#endif

  for(i=0;i<KYBER_N/8;i++) {
    for(j=0;j<8;j++) {
      mask = -(int16_t)((msg[i] >> j)&1);
      r->coeffs[8*i+j] = mask & ((KYBER_Q+1)/2);
    }
  }
}

/*************************************************
* Name:        poly_tomsg
*
* Description: Convert polynomial to 32-byte message
*
* Arguments:   - uint8_t *msg: pointer to output message
*              - const poly *a: pointer to input polynomial
**************************************************/
void poly_tomsg(uint8_t msg[KYBER_INDCPA_MSGBYTES], const poly *a)
{
  unsigned int i,j;
  uint32_t t;

  for(i=0;i<KYBER_N/8;i++) {
    msg[i] = 0;
    for(j=0;j<8;j++) {
      t  = a->coeffs[8*i+j];
      /* t += ((int16_t)t >> 15) & KYBER_Q; */
      /* t  = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1; */
      t <<= 1;
      t += 1665;
      t *= 80635;
      t >>= 28;
      t &= 1;
      msg[i] |= t << j;
    }
  }
}

/*************************************************
* Name:        poly_getnoise_eta1
*
* Description: Sample a polynomial deterministically from a seed and a nonce,
*              with output polynomial close to centered binomial distribution
*              with parameter KYBER_ETA1
*
* Arguments:   - poly *r: pointer to output polynomial
*              - const uint8_t *seed: pointer to input seed
*                                     (of length KYBER_SYMBYTES bytes)
*              - uint8_t nonce: one-byte input nonce
**************************************************/
#if !defined(KYBER_K) || KYBER_K == 2
void poly_getnoise_eta1_2(poly *r, const uint8_t seed[KYBER_SYMBYTES], uint8_t nonce)
{
  uint8_t buf[KYBER_ETA1_2*KYBER_N/4];
  prf(buf, sizeof(buf), seed, nonce);
  cbd3(r, buf);
}
#endif

#if !defined(KYBER_K) || KYBER_K == 3 || KYBER_K == 4
void poly_getnoise_eta1_3_4(poly *r, const uint8_t seed[KYBER_SYMBYTES], uint8_t nonce)
{
  uint8_t buf[KYBER_ETA1_3_4*KYBER_N/4];
  prf(buf, sizeof(buf), seed, nonce);
  cbd2(r, buf);
}
#endif

/*************************************************
* Name:        poly_getnoise_eta2
*
* Description: Sample a polynomial deterministically from a seed and a nonce,
*              with output polynomial close to centered binomial distribution
*              with parameter KYBER_ETA2
*
* Arguments:   - poly *r: pointer to output polynomial
*              - const uint8_t *seed: pointer to input seed
*                                     (of length KYBER_SYMBYTES bytes)
*              - uint8_t nonce: one-byte input nonce
**************************************************/
void poly_getnoise_eta2(poly *r, const uint8_t seed[KYBER_SYMBYTES], uint8_t nonce)
{
  uint8_t buf[KYBER_ETA2*KYBER_N/4];
  prf(buf, sizeof(buf), seed, nonce);
  cbd2(r, buf);
}


/*************************************************
* Name:        poly_ntt
*
* Description: Computes negacyclic number-theoretic transform (NTT) of
*              a polynomial in place;
*              inputs assumed to be in normal order, output in bitreversed order
*
* Arguments:   - uint16_t *r: pointer to in/output polynomial
**************************************************/
void poly_ntt(poly *r)
{
  ntt(r->coeffs);
  poly_reduce(r);
}

/*************************************************
* Name:        poly_invntt_tomont
*
* Description: Computes inverse of negacyclic number-theoretic transform (NTT)
*              of a polynomial in place;
*              inputs assumed to be in bitreversed order, output in normal order
*
* Arguments:   - uint16_t *a: pointer to in/output polynomial
**************************************************/
void poly_invntt_tomont(poly *r)
{
  invntt(r->coeffs);
}

/*************************************************
* Name:        poly_basemul_montgomery
*
* Description: Multiplication of two polynomials in NTT domain
*
* Arguments:   - poly *r: pointer to output polynomial
*              - const poly *a: pointer to first input polynomial
*              - const poly *b: pointer to second input polynomial
**************************************************/
void poly_basemul_montgomery(poly *r, const poly *a, const poly *b)
{
  unsigned int i;
  for(i=0;i<KYBER_N/4;i++) {
    basemul(&r->coeffs[4*i], &a->coeffs[4*i], &b->coeffs[4*i], zetas[64+i]);
    basemul(&r->coeffs[4*i+2], &a->coeffs[4*i+2], &b->coeffs[4*i+2], -zetas[64+i]);
  }
}

/*************************************************
* Name:        poly_tomont
*
* Description: Inplace conversion of all coefficients of a polynomial
*              from normal domain to Montgomery domain
*
* Arguments:   - poly *r: pointer to input/output polynomial
**************************************************/
void poly_tomont(poly *r)
{
  unsigned int i;
  const int16_t f = (1ULL << 32) % KYBER_Q;
  for(i=0;i<KYBER_N;i++)
    r->coeffs[i] = montgomery_reduce((int32_t)r->coeffs[i]*f);
}

/*************************************************
* Name:        poly_reduce
*
* Description: Applies Barrett reduction to all coefficients of a polynomial
*              for details of the Barrett reduction see comments in reduce.c
*
* Arguments:   - poly *r: pointer to input/output polynomial
**************************************************/
void poly_reduce(poly *r)
{
  unsigned int i;
  for(i=0;i<KYBER_N;i++)
    r->coeffs[i] = barrett_reduce(r->coeffs[i]);
}

/*************************************************
* Name:        poly_add
*
* Description: Add two polynomials; no modular reduction is performed
*
* Arguments: - poly *r: pointer to output polynomial
*            - const poly *a: pointer to first input polynomial
*            - const poly *b: pointer to second input polynomial
**************************************************/
void poly_add(poly *r, const poly *a, const poly *b)
{
  unsigned int i;
  for(i=0;i<KYBER_N;i++)
    r->coeffs[i] = a->coeffs[i] + b->coeffs[i];
}

/*************************************************
* Name:        poly_sub
*
* Description: Subtract two polynomials; no modular reduction is performed
*
* Arguments: - poly *r:       pointer to output polynomial
*            - const poly *a: pointer to first input polynomial
*            - const poly *b: pointer to second input polynomial
**************************************************/
void poly_sub(poly *r, const poly *a, const poly *b)
{
  unsigned int i;
  for(i=0;i<KYBER_N;i++)
    r->coeffs[i] = a->coeffs[i] - b->coeffs[i];
}

/*************** kyber/ref/reduce.c */

/*************************************************
* Name:        montgomery_reduce
*
* Description: Montgomery reduction; given a 32-bit integer a, computes
*              16-bit integer congruent to a * R^-1 mod q, where R=2^16
*
* Arguments:   - int32_t a: input integer to be reduced;
*                           has to be in {-q2^15,...,q2^15-1}
*
* Returns:     integer in {-q+1,...,q-1} congruent to a * R^-1 modulo q.
**************************************************/
int16_t montgomery_reduce(int32_t a)
{
  int16_t t;

  t = (int16_t)a*QINV;
  t = (a - (int32_t)t*KYBER_Q) >> 16;
  return t;
}

/*************************************************
* Name:        barrett_reduce
*
* Description: Barrett reduction; given a 16-bit integer a, computes
*              centered representative congruent to a mod q in {-(q-1)/2,...,(q-1)/2}
*
* Arguments:   - int16_t a: input integer to be reduced
*
* Returns:     integer in {-(q-1)/2,...,(q-1)/2} congruent to a modulo q.
**************************************************/
int16_t barrett_reduce(int16_t a) {
  int16_t t;
  const int16_t v = ((1<<26) + KYBER_Q/2)/KYBER_Q;

  t  = ((int32_t)v*a + (1<<25)) >> 26;
  t *= KYBER_Q;
  return a - t;
}