1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
/* Copyright (C) 1994 Aladdin Enterprises. All rights reserved.
This file is part of GNU Ghostscript.
GNU Ghostscript is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to
anyone for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing. Refer
to the GNU Ghostscript General Public License for full details.
*/
/* gdevabuf.c */
/* Alpha-buffering device */
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gxdevice.h"
#include "gxdevmem.h" /* semi-public definitions */
#include "gdevmem.h" /* private definitions */
/*
* This device converts graphics sampled at a higher resolution to
* alpha values at a lower resolution. It does this by accumulating
* the bits of a band and then converting the band to alphas.
* In order to make this work, the client of the device must promise
* only to visit each band at most once, except possibly for a single
* scan line overlapping the adjacent band, and must promise only to write
* a single color into the output. In particular, this works
* within a single call on gx_fill_path (if the fill loop is constrained
* to process bands of limited height on each pass) or a single masked image
* scanned in Y order, but not across such calls and not for other
* kinds of painting operations.
*
* We implement this device as a subclass of a monobit memory device.
* (We put its state in the definition of gx_device_memory just because
* actual subclassing introduces a lot of needless boilerplate.)
* We only allocate enough bits for one band. The height of the band
* must be a multiple of the Y scale factor; the minimum height
* of the band is twice the Y scale factor.
*
* The bits in storage are actually a sliding window on the true
* oversampled image. To avoid having to copy the bits around when we
* move the window, we adjust the mapping between the client's Y values
* and our own, as follows:
* Client Stored
* ------ ------
* y0..y0+m-1 n-m..n-1
* y0+m..y0+n-1 0..n-m-1
* where n and m are multiples of the Y scale factor and 0 <= m <= n <=
* the height of the band. (In the device structure, m is called
* mapped_start and n is called mapped_height.) This allows us to slide
* the window incrementally in either direction without copying any bits.
*/
/* Procedures */
private dev_proc_close_device(mem_abuf_close);
private dev_proc_copy_mono(mem_abuf_copy_mono);
private dev_proc_fill_rectangle(mem_abuf_fill_rectangle);
/* The device descriptor. */
private const gx_device_memory far_data mem_alpha_buffer_device =
mem_device("image(alpha buffer)", 0, 1,
gx_forward_map_rgb_color, gx_forward_map_color_rgb,
mem_abuf_copy_mono, gx_default_copy_color, mem_abuf_fill_rectangle);
/* Make an alpha-buffer memory device. */
/* We use abuf instead of alpha_buffer because */
/* gcc under VMS only retains 23 characters of procedure names. */
void
gs_make_mem_abuf_device(gx_device_memory *adev, gs_memory_t *mem,
gx_device *target, const gs_log2_scale_point *pscale,
int alpha_bits, int mapped_x)
{ gs_make_mem_device(adev, &mem_alpha_buffer_device, mem, 0, target);
adev->log2_scale = *pscale;
adev->log2_alpha_bits = alpha_bits >> 1; /* works for 1,2,4 */
adev->mapped_x = mapped_x;
set_dev_proc(adev, close_device, mem_abuf_close);
}
/* Internal routine to flush a block of the buffer. */
/* A block is a group of scan lines whose initial Y is a multiple */
/* of the Y scale and whose height is equal to the Y scale. */
private int
abuf_flush_block(gx_device_memory *adev, int y)
{ gx_device *target = adev->target;
int block_height = 1 << adev->log2_scale.y;
int alpha_bits = 1 << adev->log2_alpha_bits;
int ddepth =
(adev->width >> adev->log2_scale.x) << adev->log2_alpha_bits;
uint draster = bitmap_raster(ddepth);
int buffer_y = y - adev->mapped_y + adev->mapped_start;
byte *bits;
if ( buffer_y >= adev->height )
buffer_y -= adev->height;
bits = scan_line_base(adev, buffer_y);
bits_compress_scaled(bits, adev->width, block_height, adev->raster,
bits, draster, &adev->log2_scale,
adev->log2_alpha_bits);
return (*dev_proc(target, copy_alpha))(target,
bits, 0, draster, gx_no_bitmap_id,
adev->mapped_x >> adev->log2_scale.x,
y >> adev->log2_scale.y,
adev->width >> adev->log2_scale.x, 1,
adev->save_color, alpha_bits);
}
/* Flush the entire buffer. */
private int
abuf_flush(gx_device_memory *adev)
{ int y, code = 0;
int block_height = 1 << adev->log2_scale.y;
for ( y = 0; y < adev->mapped_height; y += block_height )
if ( (code = abuf_flush_block(adev, adev->mapped_y + y)) < 0 )
return code;
adev->mapped_height = adev->mapped_start = 0;
return 0;
}
/* Close the device, flushing the buffer. */
private int
mem_abuf_close(gx_device *dev)
{ int code = abuf_flush(mdev);
if ( code < 0 )
return code;
return mem_close(dev);
}
/*
* Framework for mapping a requested imaging operation to the buffer.
* For now, we assume top-to-bottom transfers and use a very simple algorithm.
*/
typedef struct y_transfer_s {
int y_next;
int height_left;
int transfer_y;
int transfer_height;
} y_transfer;
private void near
y_transfer_init(y_transfer *pyt, gx_device *dev, int ty, int th)
{ int bh = 1 << mdev->log2_scale.y;
if ( ty < mdev->mapped_y || ty > mdev->mapped_y + mdev->mapped_height )
{ abuf_flush(mdev);
mdev->mapped_y = ty & -bh;
mdev->mapped_height = bh;
memset(scan_line_base(mdev, 0), 0, bh * mdev->raster);
}
pyt->y_next = ty;
pyt->height_left = th;
pyt->transfer_height = 0;
}
/* while ( yt.height_left > 0 ) { y_transfer_next(&yt, mdev); ... } */
private void near
y_transfer_next(y_transfer *pyt, gx_device *dev)
{ int my = mdev->mapped_y, mh = mdev->mapped_height;
int ms = mdev->mapped_start;
int ty = pyt->y_next += pyt->transfer_height;
int th = pyt->height_left;
int bh = 1 << mdev->log2_scale.y;
/* From here on, we know that my <= ty <= my + mh. */
int tby, tbh;
if ( ty == my + mh )
{ /* Add a new block at my1. */
if ( mh == mdev->height )
{ abuf_flush_block(mdev, my);
mdev->mapped_y = my += bh;
if ( (mdev->mapped_start = ms += bh) == mh )
mdev->mapped_start = ms = 0;
}
else
{ /* Because we currently never extend backwards, */
/* we know we can't wrap around in this case. */
mdev->mapped_height = mh += bh;
}
memset(scan_line_base(mdev, (ms == 0 ? mh : ms) - bh),
0, bh * mdev->raster);
}
/* Now we know that my <= ty < my + mh. */
tby = ty - my + ms;
if ( tby < mdev->height )
{ tbh = mdev->height - ms;
if ( tbh > mh ) tbh = mh;
tbh -= tby - ms;
}
else /* wrap around */
{ tby -= mdev->height;
tbh = ms + mh - dev->height - tby;
}
if_debug7('v', "[v]my=%d, mh=%d, ms=%d, ty=%d, th=%d, tby=%d, tbh=%d\n",
my, mh, ms, ty, th, tby, tbh);
if ( tbh > th ) tbh = th;
pyt->height_left = th - tbh;
pyt->transfer_y = tby;
pyt->transfer_height = tbh;
}
/* Copy a monobit image. */
private int
mem_abuf_copy_mono(gx_device *dev,
const byte *base, int sourcex, int sraster, gx_bitmap_id id,
int x, int y, int w, int h, gx_color_index zero, gx_color_index one)
{ y_transfer yt;
if ( zero != gx_no_color_index || one == gx_no_color_index )
return_error(gs_error_undefinedresult);
x -= mdev->mapped_x;
fit_copy_xwh(dev, base, sourcex, sraster, id, x, y, w, h); /* don't limit y */
mdev->save_color = one;
y_transfer_init(&yt, dev, y, h);
while ( yt.height_left > 0 )
{ y_transfer_next(&yt, dev);
(*dev_proc(&mem_mono_device, copy_mono))(dev,
base + (yt.y_next - y) * sraster,
sourcex, sraster, gx_no_bitmap_id,
x, yt.transfer_y, w, yt.transfer_height,
gx_no_color_index, (gx_color_index)1);
}
return 0;
}
/* Fill a rectangle. */
private int
mem_abuf_fill_rectangle(gx_device *dev, int x, int y, int w, int h,
gx_color_index color)
{ y_transfer yt;
x -= mdev->mapped_x;
fit_fill_xwh(dev, x, y, w, h); /* don't limit y */
mdev->save_color = color;
y_transfer_init(&yt, dev, y, h);
while ( yt.height_left > 0 )
{ y_transfer_next(&yt, dev);
(*dev_proc(&mem_mono_device, fill_rectangle))(dev,
x, yt.transfer_y, w, yt.transfer_height,
(gx_color_index)1);
}
return 0;
}
|