1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
|
/* Copyright (C) 1989, 1995 Aladdin Enterprises. All rights reserved.
This file is part of GNU Ghostscript.
GNU Ghostscript is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to
anyone for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing. Refer
to the GNU Ghostscript General Public License for full details.
*/
/* gdevm1.c */
/* Monobit "memory" (stored bitmap) device */
#include "memory_.h"
#include "gx.h"
#include "gxdevice.h"
#include "gxdevmem.h" /* semi-public definitions */
#include "gdevmem.h" /* private definitions */
/* We went to a lot of trouble to optimize mem_mono_tile_rectangle. */
/* It has a substantial effect on the total time at high resolutions. */
/* However, it takes quite a lot of code, so we omit it on 16-bit systems. */
#define OPTIMIZE_TILE (arch_sizeof_int > 2)
/* Procedures */
private dev_proc_map_rgb_color(mem_mono_map_rgb_color);
private dev_proc_map_color_rgb(mem_mono_map_color_rgb);
private dev_proc_copy_mono(mem_mono_copy_mono);
private dev_proc_fill_rectangle(mem_mono_fill_rectangle);
#if OPTIMIZE_TILE
private dev_proc_tile_rectangle(mem_mono_tile_rectangle);
#else
# define mem_mono_tile_rectangle gx_default_tile_rectangle
#endif
/* The device descriptor. */
/* The instance is public. */
const gx_device_memory far_data mem_mono_device =
mem_full_device("image(mono)", 0, 1, mem_open,
mem_mono_map_rgb_color, mem_mono_map_color_rgb,
mem_mono_copy_mono, gx_default_copy_color, mem_mono_fill_rectangle,
mem_mono_tile_rectangle, mem_get_bits, gx_default_map_cmyk_color);
/* Map color to/from RGB. This depends on the 'inverted' flag. */
private gx_color_index
mem_mono_map_rgb_color(gx_device *dev, gx_color_value r, gx_color_value g,
gx_color_value b)
{ return gx_default_w_b_map_rgb_color(dev, r, g, b) ^
(mdev->inverted & 1);
}
private int
mem_mono_map_color_rgb(gx_device *dev, gx_color_index color,
gx_color_value prgb[3])
{ return (gx_default_w_b_map_color_rgb(dev, color ^ (mdev->inverted & 1),
prgb));
}
/* Fill a rectangle with a color. */
private int
mem_mono_fill_rectangle(gx_device *dev, int x, int y, int w, int h,
gx_color_index color)
{ fit_fill(dev, x, y, w, h);
bits_fill_rectangle(scan_line_base(mdev, y), x, mdev->raster,
-(mono_fill_chunk)color, w, h);
return 0;
}
/* Convert x coordinate to byte offset in scan line. */
#define x_to_byte(x) ((x) >> 3)
/* Copy a monochrome bitmap. */
#undef mono_masks
#define mono_masks mono_copy_masks
/* Fetch a chunk from the source. */
/* The source data are always stored big-endian. */
/* Note that the macros always cast cptr, */
/* so it doesn't matter what the type of cptr is. */
/* cshift = chunk_bits - shift. */
#undef chunk
#if arch_is_big_endian
# define chunk uint
# define cfetch_right(cptr, shift, cshift)\
(cfetch_aligned(cptr) >> shift)
# define cfetch_left(cptr, shift, cshift)\
(cfetch_aligned(cptr) << shift)
/* Fetch a chunk that straddles a chunk boundary. */
# define cfetch2(cptr, cskew, skew)\
(cfetch_left(cptr, cskew, skew) +\
cfetch_right((chunk *)(cptr) + 1, skew, cskew))
#else /* little-endian */
# define chunk bits16
private const bits16 right_masks2[9] = {
0xffff, 0x7f7f, 0x3f3f, 0x1f1f, 0x0f0f, 0x0707, 0x0303, 0x0101, 0x0000
};
private const bits16 left_masks2[9] = {
0xffff, 0xfefe, 0xfcfc, 0xf8f8, 0xf0f0, 0xe0e0, 0xc0c0, 0x8080, 0x0000
};
# define ccont(cptr, off) (((chunk *)(cptr))[off])
# define cfetch_right(cptr, shift, cshift)\
((shift) < 8 ?\
((ccont(cptr, 0) >> (shift)) & right_masks2[shift]) +\
(ccont(cptr, 0) << (cshift)) :\
((chunk)*(byte *)(cptr) << (cshift)) & 0xff00)
# define cfetch_left(cptr, shift, cshift)\
((shift) < 8 ?\
((ccont(cptr, 0) << (shift)) & left_masks2[shift]) +\
(ccont(cptr, 0) >> (cshift)) :\
((ccont(cptr, 0) & 0xff00) >> (cshift)) & 0xff)
/* Fetch a chunk that straddles a chunk boundary. */
/* We can avoid testing the shift amount twice */
/* by expanding the cfetch_left/right macros in-line. */
# define cfetch2(cptr, cskew, skew)\
((cskew) < 8 ?\
((ccont(cptr, 0) << (cskew)) & left_masks2[cskew]) +\
(ccont(cptr, 0) >> (skew)) +\
(((chunk)(((byte *)(cptr))[2]) << (cskew)) & 0xff00) :\
(((ccont(cptr, 0) & 0xff00) >> (skew)) & 0xff) +\
((ccont(cptr, 1) >> (skew)) & right_masks2[skew]) +\
(ccont(cptr, 1) << (cskew)))
#endif
/* Since source and destination are both always big-endian, */
/* fetching an aligned chunk never requires byte swapping. */
# define cfetch_aligned(cptr)\
(*(chunk *)(cptr))
/* copy_function and copy_shift get added together for dispatch */
typedef enum {
copy_or = 0, copy_store, copy_and, copy_funny
} copy_function;
/* copy_right/left is not an enum, because compilers complain about */
/* an enumeration clash when these are added to a copy_function. */
#define copy_right ((copy_function)0)
#define copy_left ((copy_function)4)
typedef struct {
short invert;
ushort op; /* copy_function */
} copy_mode;
/* Map from <c0,c1> to copy_mode. */
#define cm(i,op) { i, (ushort)op }
private copy_mode copy_modes[9] = {
cm(-1, copy_funny), /* NN */
cm(-1, copy_and), /* N0 */
cm(0, copy_or), /* N1 */
cm(0, copy_and), /* 0N */
cm(0, copy_funny), /* 00 */
cm(0, copy_store), /* 01 */
cm(-1, copy_or), /* 1N */
cm(-1, copy_store), /* 10 */
cm(0, copy_funny), /* 11 */
};
private int
mem_mono_copy_mono(gx_device *dev,
const byte *base, int sourcex, int sraster, gx_bitmap_id id,
int x, int y, int w, int h, gx_color_index zero, gx_color_index one)
{ register const byte *bptr; /* actually chunk * */
int dbit, wleft;
uint mask;
copy_mode mode;
#define function (copy_function)(mode.op)
declare_scan_ptr_as(dbptr, byte *);
#define optr ((chunk *)dbptr)
register int skew;
register uint invert;
fit_copy(dev, base, sourcex, sraster, id, x, y, w, h);
#if gx_no_color_index_value != -1 /* hokey! */
if ( zero == gx_no_color_index ) zero = -1;
if ( one == gx_no_color_index ) one = -1;
#endif
#define izero (int)zero
#define ione (int)one
mode = copy_modes[izero + izero + izero + ione + 4];
#undef izero
#undef ione
invert = (uint)(int)mode.invert; /* load register */
setup_rect_as(dbptr, byte *);
bptr = base + ((sourcex & ~chunk_align_bit_mask) >> 3);
dbit = x & chunk_align_bit_mask;
skew = dbit - (sourcex & chunk_align_bit_mask);
/* Macros for writing partial chunks. */
/* The destination pointer is always named optr, */
/* and must be declared as chunk *. */
/* cinvert may be temporarily redefined. */
#define cinvert(bits) ((bits) ^ invert)
#define write_or_masked(bits, mask, off)\
optr[off] |= (cinvert(bits) & mask)
#define write_store_masked(bits, mask, off)\
optr[off] = ((optr[off] & ~mask) | (cinvert(bits) & mask))
#define write_and_masked(bits, mask, off)\
optr[off] &= (cinvert(bits) | ~mask)
/* Macros for writing full chunks. */
#define write_or(bits) *optr |= cinvert(bits)
#define write_store(bits) *optr = cinvert(bits)
#define write_and(bits) *optr &= cinvert(bits)
/* Macro for incrementing to next chunk. */
#define next_x_chunk\
bptr += chunk_bytes; dbptr += chunk_bytes
/* Common macro for the end of each scan line. */
#define end_y_loop(sdelta, ddelta)\
if ( --h == 0 ) break;\
bptr += sdelta; dbptr += ddelta
if ( (wleft = w + dbit - chunk_bits) <= 0 )
{ /* The entire operation fits in one (destination) chunk. */
set_mono_thin_mask(mask, w, dbit);
#define write_single(wr_op, src)\
for ( ; ; )\
{ wr_op(src, mask, 0);\
end_y_loop(sraster, draster);\
}
#define write1_loop(src)\
switch ( function ) {\
case copy_or: write_single(write_or_masked, src); break;\
case copy_store: write_single(write_store_masked, src); break;\
case copy_and: write_single(write_and_masked, src); break;\
default: goto funny;\
}
if ( skew >= 0 ) /* single -> single, right/no shift */
{ if ( skew == 0 ) /* no shift */
{ write1_loop(cfetch_aligned(bptr));
}
else /* right shift */
{ int cskew = chunk_bits - skew;
write1_loop(cfetch_right(bptr, skew, cskew));
}
}
else if ( wleft <= skew ) /* single -> single, left shift */
{ int cskew = chunk_bits + skew;
skew = -skew;
write1_loop(cfetch_left(bptr, skew, cskew));
}
else /* double -> single */
{ int cskew = -skew;
skew += chunk_bits;
write1_loop(cfetch2(bptr, cskew, skew));
}
#undef write1_loop
#undef write_single
}
else if ( wleft <= skew )
{ /* 1 source chunk -> 2 destination chunks. */
/* This is an important special case for */
/* both characters and halftone tiles. */
uint rmask;
int cskew = chunk_bits - skew;
set_mono_left_mask(mask, dbit);
set_mono_right_mask(rmask, wleft);
#undef cinvert
#define cinvert(bits) (bits) /* pre-inverted here */
#if arch_is_big_endian /* no byte swapping */
# define write_1to2(wr_op)\
for ( ; ; )\
{ register uint bits = cfetch_aligned(bptr) ^ invert;\
wr_op(bits >> skew, mask, 0);\
wr_op(bits << cskew, rmask, 1);\
end_y_loop(sraster, draster);\
}
#else /* byte swapping */
# define write_1to2(wr_op)\
for ( ; ; )\
{ wr_op(cfetch_right(bptr, skew, cskew) ^ invert, mask, 0);\
wr_op(cfetch_left(bptr, cskew, skew) ^ invert, rmask, 1);\
end_y_loop(sraster, draster);\
}
#endif
switch ( function )
{
case copy_or: write_1to2(write_or_masked); break;
case copy_store: write_1to2(write_store_masked); break;
case copy_and: write_1to2(write_and_masked); break;
default: goto funny;
}
#undef cinvert
#define cinvert(bits) ((bits) ^ invert)
#undef write_1to2
}
else
{ /* More than one source chunk and more than one */
/* destination chunk are involved. */
uint rmask;
int words = (wleft & ~chunk_bit_mask) >> 3;
uint sskip = sraster - words;
uint dskip = draster - words;
register uint bits;
set_mono_left_mask(mask, dbit);
set_mono_right_mask(rmask, wleft & chunk_bit_mask);
if ( skew == 0 ) /* optimize the aligned case */
{
#define write_aligned(wr_op, wr_op_masked)\
for ( ; ; )\
{ int count = wleft;\
/* Do first partial chunk. */\
wr_op_masked(cfetch_aligned(bptr), mask, 0);\
/* Do full chunks. */\
while ( (count -= chunk_bits) >= 0 )\
{ next_x_chunk; wr_op(cfetch_aligned(bptr)); }\
/* Do last chunk */\
if ( count > -chunk_bits )\
{ wr_op_masked(cfetch_aligned(bptr + chunk_bytes), rmask, 1); }\
end_y_loop(sskip, dskip);\
}
switch ( function )
{
case copy_or:
write_aligned(write_or, write_or_masked);
break;
case copy_store:
write_aligned(write_store, write_store_masked);
break;
case copy_and:
write_aligned(write_and, write_and_masked);
break;
default:
goto funny;
}
#undef write_aligned
}
else /* not aligned */
{ int ccase =
(skew >= 0 ? copy_right :
((bptr += chunk_bytes), copy_left))
+ (int)function;
int cskew = -skew & chunk_bit_mask;
skew &= chunk_bit_mask;
for ( ; ; )
{ int count = wleft;
#define prefetch_right\
bits = cfetch_right(bptr, skew, cskew)
#define prefetch_left\
bits = cfetch2(bptr - chunk_bytes, cskew, skew)
#define write_unaligned(wr_op, wr_op_masked)\
wr_op_masked(bits, mask, 0);\
/* Do full chunks. */\
while ( count >= chunk_bits )\
{ bits = cfetch2(bptr, cskew, skew);\
next_x_chunk; wr_op(bits); count -= chunk_bits;\
}\
/* Do last chunk */\
if ( count > 0 )\
{ bits = cfetch_left(bptr, cskew, skew);\
if ( count > skew ) bits += cfetch_right(bptr + chunk_bytes, skew, cskew);\
wr_op_masked(bits, rmask, 1);\
}
switch ( ccase )
{
case copy_or + copy_left:
prefetch_left; goto uor;
case copy_or + copy_right:
prefetch_right;
uor: write_unaligned(write_or, write_or_masked);
break;
case copy_store + copy_left:
prefetch_left; goto ustore;
case copy_store + copy_right:
prefetch_right;
ustore: write_unaligned(write_store, write_store_masked);
break;
case copy_and + copy_left:
prefetch_left; goto uand;
case copy_and + copy_right:
prefetch_right;
uand: write_unaligned(write_and, write_and_masked);
break;
default:
goto funny;
}
end_y_loop(sskip, dskip);
#undef write_unaligned
#undef prefetch_left
#undef prefetch_right
}
}
}
#undef end_y_loop
#undef next_x_chunk
return 0;
/* Handle the funny cases that aren't supposed to happen. */
funny: return (invert ? -1 : mem_mono_fill_rectangle(dev, x, y, w, h, zero));
#undef optr
}
#if OPTIMIZE_TILE /**************** ****************/
/* Tile with a monochrome halftone. */
/* This is a performance bottleneck for monochrome devices, */
/* so we re-implement it, even though it takes a lot of code. */
private int
mem_mono_tile_rectangle(gx_device *dev, register const gx_tile_bitmap *tile,
int tx, int y, int tw, int th, gx_color_index color0, gx_color_index color1,
int px, int py)
{ register uint invert;
int sraster;
uint tile_bits_size;
const byte *base;
const byte *end;
int x, rw, w, h;
register const byte *bptr; /* actually chunk * */
int dbit, wleft;
uint mask;
byte *dbase;
declare_scan_ptr_as(dbptr, byte *);
#define optr ((chunk *)dbptr)
register int skew;
if ( color0 != (color1 ^ 1) )
return gx_default_tile_rectangle(dev, tile, tx, y, tw, th,
color0, color1, px, py);
fit_fill(dev, tx, y, tw, th);
invert = -(uint)color0;
sraster = tile->raster;
base = tile->data + ((y + py) % tile->rep_height) * sraster;
tile_bits_size = tile->size.y * sraster;
end = tile->data + tile_bits_size;
#undef end_y_loop
#define end_y_loop(sdelta, ddelta)\
if ( --h == 0 ) break;\
if ( end - bptr <= sdelta ) /* wrap around */\
bptr -= tile_bits_size;\
bptr += sdelta; dbptr += ddelta
draster = mdev->raster;
dbase = scan_line_base(mdev, y);
x = tx;
rw = tw;
/*
* The outermost loop here works horizontally, one iteration per
* copy of the tile. Note that all iterations except the first
* have sourcex = 0.
*/
{ int sourcex = (x + px) % tile->rep_width;
w = tile->size.x - sourcex;
bptr = base + ((sourcex & ~chunk_align_bit_mask) >> 3);
dbit = x & chunk_align_bit_mask;
skew = dbit - (sourcex & chunk_align_bit_mask);
}
outer: if ( w > rw )
w = rw;
h = th;
dbptr = dbase + ((x >> 3) & -chunk_align_bytes);
if ( (wleft = w + dbit - chunk_bits) <= 0 )
{ /* The entire operation fits in one (destination) chunk. */
set_mono_thin_mask(mask, w, dbit);
#define write1_loop(src)\
for ( ; ; )\
{ write_store_masked(src, mask, 0);\
end_y_loop(sraster, draster);\
}
if ( skew >= 0 ) /* single -> single, right/no shift */
{ if ( skew == 0 ) /* no shift */
{ write1_loop(cfetch_aligned(bptr));
}
else /* right shift */
{ int cskew = chunk_bits - skew;
write1_loop(cfetch_right(bptr, skew, cskew));
}
}
else if ( wleft <= skew ) /* single -> single, left shift */
{ int cskew = chunk_bits + skew;
skew = -skew;
write1_loop(cfetch_left(bptr, skew, cskew));
}
else /* double -> single */
{ int cskew = -skew;
skew += chunk_bits;
write1_loop(cfetch2(bptr, cskew, skew));
}
#undef write1_loop
}
else if ( wleft <= skew )
{ /* 1 source chunk -> 2 destination chunks. */
/* This is an important special case for */
/* both characters and halftone tiles. */
uint rmask;
int cskew = chunk_bits - skew;
set_mono_left_mask(mask, dbit);
set_mono_right_mask(rmask, wleft);
#if arch_is_big_endian /* no byte swapping */
#undef cinvert
#define cinvert(bits) (bits) /* pre-inverted here */
for ( ; ; )
{ register uint bits = cfetch_aligned(bptr) ^ invert;
write_store_masked(bits >> skew, mask, 0);
write_store_masked(bits << cskew, rmask, 1);
end_y_loop(sraster, draster);
}
#undef cinvert
#define cinvert(bits) ((bits) ^ invert)
#else /* byte swapping */
for ( ; ; )
{ write_store_masked(cfetch_right(bptr, skew, cskew), mask, 0);
write_store_masked(cfetch_left(bptr, cskew, skew), rmask, 1);
end_y_loop(sraster, draster);
}
#endif
}
else
{ /* More than one source chunk and more than one */
/* destination chunk are involved. */
uint rmask;
int words = (wleft & ~chunk_bit_mask) >> 3;
uint sskip = sraster - words;
uint dskip = draster - words;
register uint bits;
#define next_x_chunk\
bptr += chunk_bytes; dbptr += chunk_bytes
set_mono_left_mask(mask, dbit);
set_mono_right_mask(rmask, wleft & chunk_bit_mask);
if ( skew == 0 ) /* optimize the aligned case */
{ for ( ; ; )
{ int count = wleft;
/* Do first partial chunk. */
write_store_masked(cfetch_aligned(bptr), mask, 0);
/* Do full chunks. */
while ( (count -= chunk_bits) >= 0 )
{ next_x_chunk;
write_store(cfetch_aligned(bptr));
}
/* Do last chunk */
if ( count > -chunk_bits )
{ write_store_masked(cfetch_aligned(bptr + chunk_bytes), rmask, 1);
}
end_y_loop(sskip, dskip);
}
}
else /* not aligned */
{ bool case_right =
(skew >= 0 ? true :
((bptr += chunk_bytes), false));
int cskew = -skew & chunk_bit_mask;
skew &= chunk_bit_mask;
for ( ; ; )
{ int count = wleft;
if ( case_right )
bits = cfetch_right(bptr, skew, cskew);
else
bits = cfetch2(bptr - chunk_bytes, cskew, skew);
write_store_masked(bits, mask, 0);
/* Do full chunks. */
while ( count >= chunk_bits )
{ bits = cfetch2(bptr, cskew, skew);
next_x_chunk;
write_store(bits);
count -= chunk_bits;
}
/* Do last chunk */
if ( count > 0 )
{ bits = cfetch_left(bptr, cskew, skew);
if ( count > skew )
bits += cfetch_right(bptr + chunk_bytes, skew, cskew);
write_store_masked(bits, rmask, 1);
}
end_y_loop(sskip, dskip);
}
}
}
#undef end_y_loop
#undef next_x_chunk
#undef optr
if ( (rw -= w) > 0 )
{ x += w;
w = tile->size.x;
bptr = base;
skew = dbit = x & chunk_align_bit_mask;
goto outer;
}
return 0;
}
#endif /**************** ****************/
|