File: gdevm1.c

package info (click to toggle)
gs 3.33-7
  • links: PTS
  • area: main
  • in suites: hamm
  • size: 7,436 kB
  • ctags: 15,511
  • sloc: ansic: 92,150; asm: 684; sh: 486; makefile: 91
file content (569 lines) | stat: -rw-r--r-- 18,373 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
/* Copyright (C) 1989, 1995 Aladdin Enterprises.  All rights reserved.
  
  This file is part of GNU Ghostscript.
  
  GNU Ghostscript is distributed in the hope that it will be useful, but
  WITHOUT ANY WARRANTY.  No author or distributor accepts responsibility to
  anyone for the consequences of using it or for whether it serves any
  particular purpose or works at all, unless he says so in writing.  Refer
  to the GNU Ghostscript General Public License for full details.
  
*/

/* gdevm1.c */
/* Monobit "memory" (stored bitmap) device */
#include "memory_.h"
#include "gx.h"
#include "gxdevice.h"
#include "gxdevmem.h"			/* semi-public definitions */
#include "gdevmem.h"			/* private definitions */

/* We went to a lot of trouble to optimize mem_mono_tile_rectangle. */
/* It has a substantial effect on the total time at high resolutions. */
/* However, it takes quite a lot of code, so we omit it on 16-bit systems. */
#define OPTIMIZE_TILE (arch_sizeof_int > 2)

/* Procedures */
private dev_proc_map_rgb_color(mem_mono_map_rgb_color);
private dev_proc_map_color_rgb(mem_mono_map_color_rgb);
private dev_proc_copy_mono(mem_mono_copy_mono);
private dev_proc_fill_rectangle(mem_mono_fill_rectangle);
#if OPTIMIZE_TILE
private dev_proc_tile_rectangle(mem_mono_tile_rectangle);
#else
#  define mem_mono_tile_rectangle gx_default_tile_rectangle
#endif

/* The device descriptor. */
/* The instance is public. */
const gx_device_memory far_data mem_mono_device =
  mem_full_device("image(mono)", 0, 1, mem_open,
    mem_mono_map_rgb_color, mem_mono_map_color_rgb,
    mem_mono_copy_mono, gx_default_copy_color, mem_mono_fill_rectangle,
    mem_mono_tile_rectangle, mem_get_bits, gx_default_map_cmyk_color);

/* Map color to/from RGB.  This depends on the 'inverted' flag. */
private gx_color_index
mem_mono_map_rgb_color(gx_device *dev, gx_color_value r, gx_color_value g,
  gx_color_value b)
{	return gx_default_w_b_map_rgb_color(dev, r, g, b) ^
	  (mdev->inverted & 1);
}
private int
mem_mono_map_color_rgb(gx_device *dev, gx_color_index color,
  gx_color_value prgb[3])
{	return (gx_default_w_b_map_color_rgb(dev, color ^ (mdev->inverted & 1),
					     prgb));
}

/* Fill a rectangle with a color. */
private int
mem_mono_fill_rectangle(gx_device *dev, int x, int y, int w, int h,
  gx_color_index color)
{	fit_fill(dev, x, y, w, h);
	bits_fill_rectangle(scan_line_base(mdev, y), x, mdev->raster,
			    -(mono_fill_chunk)color, w, h);
	return 0;
}

/* Convert x coordinate to byte offset in scan line. */
#define x_to_byte(x) ((x) >> 3)

/* Copy a monochrome bitmap. */
#undef mono_masks
#define mono_masks mono_copy_masks

/* Fetch a chunk from the source. */
/* The source data are always stored big-endian. */
/* Note that the macros always cast cptr, */
/* so it doesn't matter what the type of cptr is. */
/* cshift = chunk_bits - shift. */
#undef chunk
#if arch_is_big_endian
#  define chunk uint
#  define cfetch_right(cptr, shift, cshift)\
	(cfetch_aligned(cptr) >> shift)
#  define cfetch_left(cptr, shift, cshift)\
	(cfetch_aligned(cptr) << shift)
/* Fetch a chunk that straddles a chunk boundary. */
#  define cfetch2(cptr, cskew, skew)\
    (cfetch_left(cptr, cskew, skew) +\
     cfetch_right((chunk *)(cptr) + 1, skew, cskew))
#else				/* little-endian */
#  define chunk bits16
private const bits16 right_masks2[9] = {
	0xffff, 0x7f7f, 0x3f3f, 0x1f1f, 0x0f0f, 0x0707, 0x0303, 0x0101, 0x0000
};
private const bits16 left_masks2[9] = {
	0xffff, 0xfefe, 0xfcfc, 0xf8f8, 0xf0f0, 0xe0e0, 0xc0c0, 0x8080, 0x0000
};
#  define ccont(cptr, off) (((chunk *)(cptr))[off])
#  define cfetch_right(cptr, shift, cshift)\
	((shift) < 8 ?\
	 ((ccont(cptr, 0) >> (shift)) & right_masks2[shift]) +\
	  (ccont(cptr, 0) << (cshift)) :\
	 ((chunk)*(byte *)(cptr) << (cshift)) & 0xff00)
#  define cfetch_left(cptr, shift, cshift)\
	((shift) < 8 ?\
	 ((ccont(cptr, 0) << (shift)) & left_masks2[shift]) +\
	  (ccont(cptr, 0) >> (cshift)) :\
	 ((ccont(cptr, 0) & 0xff00) >> (cshift)) & 0xff)
/* Fetch a chunk that straddles a chunk boundary. */
/* We can avoid testing the shift amount twice */
/* by expanding the cfetch_left/right macros in-line. */
#  define cfetch2(cptr, cskew, skew)\
	((cskew) < 8 ?\
	 ((ccont(cptr, 0) << (cskew)) & left_masks2[cskew]) +\
	  (ccont(cptr, 0) >> (skew)) +\
	  (((chunk)(((byte *)(cptr))[2]) << (cskew)) & 0xff00) :\
	 (((ccont(cptr, 0) & 0xff00) >> (skew)) & 0xff) +\
	  ((ccont(cptr, 1) >> (skew)) & right_masks2[skew]) +\
	   (ccont(cptr, 1) << (cskew)))
#endif
/* Since source and destination are both always big-endian, */
/* fetching an aligned chunk never requires byte swapping. */
#  define cfetch_aligned(cptr)\
	(*(chunk *)(cptr))

/* copy_function and copy_shift get added together for dispatch */
typedef enum {
	copy_or = 0, copy_store, copy_and, copy_funny
} copy_function;
/* copy_right/left is not an enum, because compilers complain about */
/* an enumeration clash when these are added to a copy_function. */
#define copy_right ((copy_function)0)
#define copy_left ((copy_function)4)
typedef struct {
	short invert;
	ushort op;			/* copy_function */
} copy_mode;
/* Map from <c0,c1> to copy_mode. */
#define cm(i,op) { i, (ushort)op }
private copy_mode copy_modes[9] = {
	cm(-1, copy_funny),		/* NN */
	cm(-1, copy_and),		/* N0 */
	cm(0, copy_or),			/* N1 */
	cm(0, copy_and),		/* 0N */
	cm(0, copy_funny),		/* 00 */
	cm(0, copy_store),		/* 01 */
	cm(-1, copy_or),		/* 1N */
	cm(-1, copy_store),		/* 10 */
	cm(0, copy_funny),		/* 11 */
};
private int
mem_mono_copy_mono(gx_device *dev,
  const byte *base, int sourcex, int sraster, gx_bitmap_id id,
  int x, int y, int w, int h, gx_color_index zero, gx_color_index one)
{	register const byte *bptr;		/* actually chunk * */
	int dbit, wleft;
	uint mask;
	copy_mode mode;
#define function (copy_function)(mode.op)
	declare_scan_ptr_as(dbptr, byte *);
#define optr ((chunk *)dbptr)
	register int skew;
	register uint invert;
	fit_copy(dev, base, sourcex, sraster, id, x, y, w, h);
#if gx_no_color_index_value != -1		/* hokey! */
	if ( zero == gx_no_color_index ) zero = -1;
	if ( one == gx_no_color_index ) one = -1;
#endif
#define izero (int)zero
#define ione (int)one
	mode = copy_modes[izero + izero + izero + ione + 4];
#undef izero
#undef ione
	invert = (uint)(int)mode.invert;	/* load register */
	setup_rect_as(dbptr, byte *);
	bptr = base + ((sourcex & ~chunk_align_bit_mask) >> 3);
	dbit = x & chunk_align_bit_mask;
	skew = dbit - (sourcex & chunk_align_bit_mask);
/* Macros for writing partial chunks. */
/* The destination pointer is always named optr, */
/* and must be declared as chunk *. */
/* cinvert may be temporarily redefined. */
#define cinvert(bits) ((bits) ^ invert)
#define write_or_masked(bits, mask, off)\
  optr[off] |= (cinvert(bits) & mask)
#define write_store_masked(bits, mask, off)\
  optr[off] = ((optr[off] & ~mask) | (cinvert(bits) & mask))
#define write_and_masked(bits, mask, off)\
  optr[off] &= (cinvert(bits) | ~mask)
/* Macros for writing full chunks. */
#define write_or(bits)  *optr |= cinvert(bits)
#define write_store(bits) *optr = cinvert(bits)
#define write_and(bits) *optr &= cinvert(bits)
/* Macro for incrementing to next chunk. */
#define next_x_chunk\
  bptr += chunk_bytes; dbptr += chunk_bytes
/* Common macro for the end of each scan line. */
#define end_y_loop(sdelta, ddelta)\
  if ( --h == 0 ) break;\
  bptr += sdelta; dbptr += ddelta
	if ( (wleft = w + dbit - chunk_bits) <= 0 )
	   {	/* The entire operation fits in one (destination) chunk. */
		set_mono_thin_mask(mask, w, dbit);
#define write_single(wr_op, src)\
  for ( ; ; )\
   { wr_op(src, mask, 0);\
     end_y_loop(sraster, draster);\
   }
#define write1_loop(src)\
  switch ( function ) {\
    case copy_or: write_single(write_or_masked, src); break;\
    case copy_store: write_single(write_store_masked, src); break;\
    case copy_and: write_single(write_and_masked, src); break;\
    default: goto funny;\
  }
		if ( skew >= 0 )	/* single -> single, right/no shift */
		{	if ( skew == 0 )	/* no shift */
			{	write1_loop(cfetch_aligned(bptr));
			}
			else			/* right shift */
			{	int cskew = chunk_bits - skew;
				write1_loop(cfetch_right(bptr, skew, cskew));
			}
		}
		else if ( wleft <= skew )	/* single -> single, left shift */
		{	int cskew = chunk_bits + skew;
			skew = -skew;
			write1_loop(cfetch_left(bptr, skew, cskew));
		}
		else			/* double -> single */
		{	int cskew = -skew;
			skew += chunk_bits;
			write1_loop(cfetch2(bptr, cskew, skew));
		}
#undef write1_loop
#undef write_single
	   }
	else if ( wleft <= skew )
	   {	/* 1 source chunk -> 2 destination chunks. */
		/* This is an important special case for */
		/* both characters and halftone tiles. */
		uint rmask;
		int cskew = chunk_bits - skew;
		set_mono_left_mask(mask, dbit);
		set_mono_right_mask(rmask, wleft);
#undef cinvert
#define cinvert(bits) (bits)		/* pre-inverted here */
#if arch_is_big_endian			/* no byte swapping */
#  define write_1to2(wr_op)\
  for ( ; ; )\
   { register uint bits = cfetch_aligned(bptr) ^ invert;\
     wr_op(bits >> skew, mask, 0);\
     wr_op(bits << cskew, rmask, 1);\
     end_y_loop(sraster, draster);\
   }
#else					/* byte swapping */
#  define write_1to2(wr_op)\
  for ( ; ; )\
   { wr_op(cfetch_right(bptr, skew, cskew) ^ invert, mask, 0);\
     wr_op(cfetch_left(bptr, cskew, skew) ^ invert, rmask, 1);\
     end_y_loop(sraster, draster);\
   }
#endif
		switch ( function )
		   {
		case copy_or: write_1to2(write_or_masked); break;
		case copy_store: write_1to2(write_store_masked); break;
		case copy_and: write_1to2(write_and_masked); break;
		default: goto funny;
		   }
#undef cinvert
#define cinvert(bits) ((bits) ^ invert)
#undef write_1to2
	   }
	else
	   {	/* More than one source chunk and more than one */
		/* destination chunk are involved. */
		uint rmask;
		int words = (wleft & ~chunk_bit_mask) >> 3;
		uint sskip = sraster - words;
		uint dskip = draster - words;
		register uint bits;
		set_mono_left_mask(mask, dbit);
		set_mono_right_mask(rmask, wleft & chunk_bit_mask);
		if ( skew == 0 )	/* optimize the aligned case */
		   {
#define write_aligned(wr_op, wr_op_masked)\
  for ( ; ; )\
   { int count = wleft;\
     /* Do first partial chunk. */\
     wr_op_masked(cfetch_aligned(bptr), mask, 0);\
     /* Do full chunks. */\
     while ( (count -= chunk_bits) >= 0 )\
      { next_x_chunk; wr_op(cfetch_aligned(bptr)); }\
     /* Do last chunk */\
     if ( count > -chunk_bits )\
      { wr_op_masked(cfetch_aligned(bptr + chunk_bytes), rmask, 1); }\
     end_y_loop(sskip, dskip);\
   }
			switch ( function )
			  {
			  case copy_or:
			    write_aligned(write_or, write_or_masked);
			    break;
			  case copy_store:
			    write_aligned(write_store, write_store_masked);
			    break;
			  case copy_and:
			    write_aligned(write_and, write_and_masked);
			    break;
			  default:
			    goto funny;
			  }
#undef write_aligned
		   }
		else			/* not aligned */
		   {	int ccase =
			  (skew >= 0 ? copy_right :
			   ((bptr += chunk_bytes), copy_left))
			  + (int)function;
			int cskew = -skew & chunk_bit_mask;
			skew &= chunk_bit_mask;
			for ( ; ; )
			   {	int count = wleft;
#define prefetch_right\
  bits = cfetch_right(bptr, skew, cskew)
#define prefetch_left\
  bits = cfetch2(bptr - chunk_bytes, cskew, skew)
#define write_unaligned(wr_op, wr_op_masked)\
  wr_op_masked(bits, mask, 0);\
  /* Do full chunks. */\
  while ( count >= chunk_bits )\
    { bits = cfetch2(bptr, cskew, skew);\
      next_x_chunk; wr_op(bits); count -= chunk_bits;\
    }\
  /* Do last chunk */\
  if ( count > 0 )\
    { bits = cfetch_left(bptr, cskew, skew);\
      if ( count > skew ) bits += cfetch_right(bptr + chunk_bytes, skew, cskew);\
      wr_op_masked(bits, rmask, 1);\
    }
				switch ( ccase )
				  {
				  case copy_or + copy_left:
				    prefetch_left; goto uor;
				  case copy_or + copy_right:
				    prefetch_right;
uor:				    write_unaligned(write_or, write_or_masked);
				    break;
				  case copy_store + copy_left:
				    prefetch_left; goto ustore;
				  case copy_store + copy_right:
				    prefetch_right;
ustore:				    write_unaligned(write_store, write_store_masked);
				    break;
				  case copy_and + copy_left:
				    prefetch_left; goto uand;
				  case copy_and + copy_right:
				    prefetch_right;
uand:				    write_unaligned(write_and, write_and_masked);
				    break;
				  default:
				    goto funny;
				  }
				end_y_loop(sskip, dskip);
#undef write_unaligned
#undef prefetch_left
#undef prefetch_right
			   }
		   }
	   }
#undef end_y_loop
#undef next_x_chunk
	return 0;
	/* Handle the funny cases that aren't supposed to happen. */
funny:	return (invert ? -1 : mem_mono_fill_rectangle(dev, x, y, w, h, zero));
#undef optr
}

#if OPTIMIZE_TILE		/**************** ****************/

/* Tile with a monochrome halftone. */
/* This is a performance bottleneck for monochrome devices, */
/* so we re-implement it, even though it takes a lot of code. */
private int
mem_mono_tile_rectangle(gx_device *dev, register const gx_tile_bitmap *tile,
  int tx, int y, int tw, int th, gx_color_index color0, gx_color_index color1,
  int px, int py)
{	register uint invert;
	int sraster;
	uint tile_bits_size;
	const byte *base;
	const byte *end;
	int x, rw, w, h;
	register const byte *bptr;		/* actually chunk * */
	int dbit, wleft;
	uint mask;
	byte *dbase;
	declare_scan_ptr_as(dbptr, byte *);
#define optr ((chunk *)dbptr)
	register int skew;

	if ( color0 != (color1 ^ 1) )
	  return gx_default_tile_rectangle(dev, tile, tx, y, tw, th,
					   color0, color1, px, py);
	fit_fill(dev, tx, y, tw, th);
	invert = -(uint)color0;
	sraster = tile->raster;
	base = tile->data + ((y + py) % tile->rep_height) * sraster;
	tile_bits_size = tile->size.y * sraster;
	end = tile->data + tile_bits_size;
#undef end_y_loop
#define end_y_loop(sdelta, ddelta)\
  if ( --h == 0 ) break;\
  if ( end - bptr <= sdelta )	/* wrap around */\
    bptr -= tile_bits_size;\
  bptr += sdelta; dbptr += ddelta
	draster = mdev->raster;
	dbase = scan_line_base(mdev, y);
	x = tx;
	rw = tw;
	/*
	 * The outermost loop here works horizontally, one iteration per
	 * copy of the tile.  Note that all iterations except the first
	 * have sourcex = 0.
	 */
	{ int sourcex = (x + px) % tile->rep_width;
	  w = tile->size.x - sourcex;
	  bptr = base + ((sourcex & ~chunk_align_bit_mask) >> 3);
	  dbit = x & chunk_align_bit_mask;
	  skew = dbit - (sourcex & chunk_align_bit_mask);
	}
outer:	if ( w > rw )
	  w = rw;
	h = th;
	dbptr = dbase + ((x >> 3) & -chunk_align_bytes);
	if ( (wleft = w + dbit - chunk_bits) <= 0 )
	   {	/* The entire operation fits in one (destination) chunk. */
		set_mono_thin_mask(mask, w, dbit);
#define write1_loop(src)\
  for ( ; ; )\
   { write_store_masked(src, mask, 0);\
     end_y_loop(sraster, draster);\
   }
		if ( skew >= 0 )	/* single -> single, right/no shift */
		{	if ( skew == 0 )	/* no shift */
			{	write1_loop(cfetch_aligned(bptr));
			}
			else			/* right shift */
			{	int cskew = chunk_bits - skew;
				write1_loop(cfetch_right(bptr, skew, cskew));
			}
		}
		else if ( wleft <= skew )	/* single -> single, left shift */
		{	int cskew = chunk_bits + skew;
			skew = -skew;
			write1_loop(cfetch_left(bptr, skew, cskew));
		}
		else			/* double -> single */
		{	int cskew = -skew;
			skew += chunk_bits;
			write1_loop(cfetch2(bptr, cskew, skew));
		}
#undef write1_loop
	  }
	else if ( wleft <= skew )
	  {	/* 1 source chunk -> 2 destination chunks. */
		/* This is an important special case for */
		/* both characters and halftone tiles. */
		uint rmask;
		int cskew = chunk_bits - skew;
		set_mono_left_mask(mask, dbit);
		set_mono_right_mask(rmask, wleft);
#if arch_is_big_endian			/* no byte swapping */
#undef cinvert
#define cinvert(bits) (bits)		/* pre-inverted here */
		for ( ; ; )
		  { register uint bits = cfetch_aligned(bptr) ^ invert;
		    write_store_masked(bits >> skew, mask, 0);
		    write_store_masked(bits << cskew, rmask, 1);
		    end_y_loop(sraster, draster);
		  }
#undef cinvert
#define cinvert(bits) ((bits) ^ invert)
#else					/* byte swapping */
		for ( ; ; )
		  { write_store_masked(cfetch_right(bptr, skew, cskew), mask, 0);
		    write_store_masked(cfetch_left(bptr, cskew, skew), rmask, 1);
		    end_y_loop(sraster, draster);
		  }
#endif
	  }
	else
	   {	/* More than one source chunk and more than one */
		/* destination chunk are involved. */
		uint rmask;
		int words = (wleft & ~chunk_bit_mask) >> 3;
		uint sskip = sraster - words;
		uint dskip = draster - words;
		register uint bits;
#define next_x_chunk\
  bptr += chunk_bytes; dbptr += chunk_bytes

		set_mono_left_mask(mask, dbit);
		set_mono_right_mask(rmask, wleft & chunk_bit_mask);
		if ( skew == 0 )	/* optimize the aligned case */
		   {	for ( ; ; )
			  { int count = wleft;
			    /* Do first partial chunk. */
			    write_store_masked(cfetch_aligned(bptr), mask, 0);
			    /* Do full chunks. */
			    while ( (count -= chunk_bits) >= 0 )
			      { next_x_chunk;
				write_store(cfetch_aligned(bptr));
			      }
			    /* Do last chunk */
			    if ( count > -chunk_bits )
			      { write_store_masked(cfetch_aligned(bptr + chunk_bytes), rmask, 1);
			      }
			    end_y_loop(sskip, dskip);
			  }
		   }
		else			/* not aligned */
		   {	bool case_right =
			  (skew >= 0 ? true :
			   ((bptr += chunk_bytes), false));
			int cskew = -skew & chunk_bit_mask;
			skew &= chunk_bit_mask;
			for ( ; ; )
			   {	int count = wleft;
				if ( case_right )
				  bits = cfetch_right(bptr, skew, cskew);
				else
				  bits = cfetch2(bptr - chunk_bytes, cskew, skew);
				write_store_masked(bits, mask, 0);
				/* Do full chunks. */
				while ( count >= chunk_bits )
				  { bits = cfetch2(bptr, cskew, skew);
				    next_x_chunk;
				    write_store(bits);
				    count -= chunk_bits;
				  }
				/* Do last chunk */
				if ( count > 0 )
				  { bits = cfetch_left(bptr, cskew, skew);
				    if ( count > skew )
				      bits += cfetch_right(bptr + chunk_bytes, skew, cskew);
				    write_store_masked(bits, rmask, 1);
				  }
				end_y_loop(sskip, dskip);
			   }
		   }
	   }
#undef end_y_loop
#undef next_x_chunk
#undef optr
	if ( (rw -= w) > 0 )
	  {	x += w;
		w = tile->size.x;
		bptr = base;
		skew = dbit = x & chunk_align_bit_mask;
		goto outer;
	  }
	return 0;
}

#endif				/**************** ****************/