1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
|
/* Copyright (C) 1989, 1992, 1993, 1994 Aladdin Enterprises. All rights reserved.
This file is part of GNU Ghostscript.
GNU Ghostscript is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to
anyone for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing. Refer
to the GNU Ghostscript General Public License for full details.
*/
/* gxdraw.c */
/* Primitive drawing routines for Ghostscript imaging library */
#include "math_.h"
#include "gx.h"
#include "gpcheck.h"
#include "gserrors.h"
#include "gxfixed.h"
#include "gxmatrix.h"
#include "gzstate.h"
#include "gxdraw.h"
#include "gzht.h"
/* Define the standard device color types. */
private struct_proc_enum_ptrs(dc_ht_binary_enum_ptrs);
private struct_proc_reloc_ptrs(dc_ht_binary_reloc_ptrs);
const gx_device_color_procs
gx_dc_none =
{ gx_dc_no_load, gx_dc_no_fill_rectangle, 0, 0 },
gx_dc_pure =
{ gx_dc_pure_load, gx_dc_pure_fill_rectangle, 0, 0 },
gx_dc_ht_binary =
{ gx_dc_ht_binary_load, gx_dc_ht_binary_fill_rectangle,
dc_ht_binary_enum_ptrs, dc_ht_binary_reloc_ptrs
},
gx_dc_ht_colored =
{ gx_dc_ht_colored_load, gx_dc_ht_colored_fill_rectangle, 0, 0 };
/* GC procedures */
#define cptr ((gx_device_color *)vptr)
private ENUM_PTRS_BEGIN(dc_ht_binary_enum_ptrs) return 0;
case 0:
{ gx_ht_tile *tile = cptr->colors.binary.b_tile;
ENUM_RETURN(tile - tile->index);
}
ENUM_PTRS_END
private RELOC_PTRS_BEGIN(dc_ht_binary_reloc_ptrs) {
uint index = cptr->colors.binary.b_tile->index;
RELOC_TYPED_OFFSET_PTR(gx_device_color, colors.binary.b_tile, index);
} RELOC_PTRS_END
#undef cptr
/* Null color */
int
gx_dc_no_load(gx_device_color *pdevc, const gs_state *pgs)
{ return 0;
}
int
gx_dc_no_fill_rectangle(const gx_device_color *pdevc, int x, int y,
int w, int h, gx_device *dev, const gs_state *pgs)
{ return 0;
}
/* Pure color */
int
gx_dc_pure_load(gx_device_color *pdevc, const gs_state *pgs)
{ return 0;
}
int
gx_dc_pure_fill_rectangle(const gx_device_color *pdevc, int x, int y,
int w, int h, gx_device *dev, const gs_state *pgs)
{ return (*dev_proc(dev, fill_rectangle))(dev, x, y, w, h,
pdevc->colors.pure);
}
/* Binary halftone */
int
gx_dc_ht_binary_fill_rectangle(const gx_device_color *pdevc, int x, int y,
int w, int h, gx_device *dev, const gs_state *pgs)
{ const gx_ht_order *porder = &pgs->dev_ht->order;
return (*dev_proc(dev, tile_rectangle))(dev,
&pdevc->colors.binary.b_tile->tile,
x, y, w, h, pdevc->colors.binary.color[0],
pdevc->colors.binary.color[1],
porder->phase.x, porder->phase.y);
}
/*
* Auxiliary procedures for computing a * b / c and a * b % c
* when a, b, and c are all non-negative,
* b < c, and a * b exceeds (or might exceed) the capacity of a long.
* It's really annoying that C doesn't provide any way to get at
* the double-length multiply/divide instructions that
* the machine undoubtedly provides....
*
* Note that these routines are exported for the benefit of gxfill.c.
*/
fixed
fixed_mult_quo(fixed a, fixed b, fixed c)
{ return (fixed)floor((double)a * b / c);
}
fixed
fixed_mult_rem(fixed a, fixed b, fixed c)
{ double prod = (double)a * b;
return (fixed)(prod - floor(prod / c) * c);
}
/* Fill a trapezoid. Requires: wt >= 0, wb >= 0, h >= 0. */
/* Note that the arguments are fixeds, not ints! */
/* This is derived from Paul Haeberli's floating point algorithm. */
typedef struct trap_line_s {
int di; fixed df; /* dx/dy ratio */
fixed ldi, ldf; /* increment per scan line */
fixed x, xf; /* current value */
} trap_line;
int
gx_fill_trapezoid_fixed(fixed fx0, fixed fw0, fixed fy0,
fixed fx1, fixed fw1, fixed fh, bool swap_axes,
const gx_device_color *pdevc, const gs_state *pgs)
{ const fixed ymin = fixed_rounded(fy0) + fixed_half;
const fixed ymax = fixed_rounded(fy0 + fh);
int iy = fixed2int_var(ymin);
const int iy1 = fixed2int_var(ymax);
if ( iy >= iy1 ) return 0; /* no scan lines to sample */
{ trap_line l, r;
int rxl, rxr, ry;
const fixed dxl = fx1 - fx0;
const fixed dxr = dxl + fw1 - fw0;
const fixed yline = ymin - fy0; /* partial pixel offset to */
/* first line to sample */
int fill_direct = color_is_pure(pdevc);
gx_color_index cindex;
gx_device *dev;
dev_proc_fill_rectangle((*fill_rect));
int code;
if_debug2('z', "[z]y=[%d,%d]\n", iy, iy1);
if ( fill_direct )
cindex = pdevc->colors.pure,
dev = gs_currentdevice_inline(pgs),
fill_rect = dev_proc(dev, fill_rectangle);
return_if_interrupt();
r.x = (l.x = fx0 + fixed_half) + fw0;
ry = iy;
/* If the rounded X values are the same on both sides, */
/* we can save ourselves a *lot* of work. */
if ( fixed_floor(l.x) == fixed_rounded(fx1) &&
fixed_floor(r.x) == fixed_rounded(fx1 + fw1)
)
{ rxl = fixed2int_var(l.x);
rxr = fixed2int_var(r.x);
iy = iy1;
if_debug2('z', "[z]rectangle, x=[%d,%d]\n", rxl, rxr);
goto last;
}
#define fill_trap_rect(x,y,w,h)\
(fill_direct ?\
(swap_axes ? (*fill_rect)(dev, y, x, h, w, cindex) :\
(*fill_rect)(dev, x, y, w, h, cindex)) :\
swap_axes ? gx_fill_rectangle(y, x, h, w, pdevc, pgs) :\
gx_fill_rectangle(x, y, w, h, pdevc, pgs))
/* Compute the dx/dy ratios. */
/* dx# = dx#i + (dx#f / fh). */
#define compute_dx(tl, d)\
if ( d >= 0 )\
{ if ( d < fh ) tl.di = 0, tl.df = d;\
else tl.di = (int)(d / fh), tl.df = d - tl.di * fh, tl.x += yline * tl.di;\
}\
else\
{ if ( (tl.df = d + fh) >= 0 /* d >= -fh */ ) tl.di = -1, tl.x -= yline;\
else tl.di = (int)-((fh - 1 - d) / fh), tl.df = d - tl.di * fh, tl.x += yline * tl.di;\
}
/* Compute the x offsets at the first scan line to sample. */
/* We need to be careful in computing yline * dx#f {/,%} fh */
/* because the multiplication may overflow. We know that */
/* all the quantities involved are non-negative, and that */
/* yline is less than 1 (as a fixed, of course); this gives us */
/* a cheap conservative check for overflow in the multiplication. */
#define ymult_limit (max_fixed / fixed_1)
#define ymult_quo(yl, dxxf)\
(dxxf < ymult_limit ? yl * dxxf / fh : fixed_mult_quo(yl, dxxf, fh))
#define ymult_rem(yl, dxxf)\
(dxxf < ymult_limit ? yl * dxxf % fh : fixed_mult_rem(yl, dxxf, fh))
/* It's worth checking for dxl == dxr, since this is the case */
/* for parallelograms (including stroked lines). */
compute_dx(l, dxl);
if ( dxr == dxl )
{ fixed fx = ymult_quo(yline, l.df);
l.x += fx;
if ( l.di == 0 )
r.di = 0, r.df = l.df;
else /* too hard to do adjustments right */
compute_dx(r, dxr);
r.x += fx;
}
else
{ l.x += ymult_quo(yline, l.df);
compute_dx(r, dxr);
r.x += ymult_quo(yline, r.df);
}
rxl = fixed2int_var(l.x);
rxr = fixed2int_var(r.x);
/* Compute one line's worth of dx/dy. */
/* dx# * fixed_1 = ld#i + (ld#f / fh). */
/* We don't have to bother with this if */
/* we're only sampling a single scan line. */
if ( iy1 - iy == 1 )
{ iy++;
goto last;
}
#define compute_ldx(tl)\
if ( tl.df < ymult_limit )\
tl.ldi = int2fixed(tl.di) + int2fixed(tl.df) / fh,\
tl.ldf = int2fixed(tl.df) % fh,\
tl.xf = yline * tl.df % fh - fh;\
else\
tl.ldi = int2fixed(tl.di) + fixed_mult_quo(fixed_1, tl.df, fh),\
tl.ldf = fixed_mult_rem(fixed_1, tl.df, fh),\
tl.xf = fixed_mult_rem(yline, tl.df, fh) - fh
compute_ldx(l);
if ( dxr == dxl )
r.ldi = l.ldi, r.ldf = l.ldf, r.xf = l.xf;
else
{ compute_ldx(r);
}
#undef compute_ldx
while ( ++iy != iy1 )
{ int ixl, ixr;
#define step_line(tl)\
tl.x += tl.ldi;\
if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= fh, tl.x++;
step_line(l);
step_line(r);
#undef step_line
ixl = fixed2int_var(l.x);
ixr = fixed2int_var(r.x);
if ( ixl != rxl || ixr != rxr )
{ code = fill_trap_rect(rxl, ry, rxr - rxl, iy - ry);
if ( code < 0 ) goto xit;
rxl = ixl, rxr = ixr, ry = iy;
}
}
last: code = fill_trap_rect(rxl, ry, rxr - rxl, iy - ry);
xit: if ( code < 0 && fill_direct )
return_error(code);
return_if_interrupt();
return code;
}
}
/* Fill a parallelogram whose points are p, p+a, p+b, and p+a+b. */
/* We should swap axes to get best accuracy, but we don't. */
int
gx_fill_pgram_fixed(fixed px, fixed py, fixed ax, fixed ay,
fixed bx, fixed by, const gx_device_color *pdevc,
const gs_state *pgs)
{ fixed t;
fixed dy, qx, dx, wx, pax, qax;
int code;
/* Ensure ay >= 0, by >= 0. */
if ( ay < 0 ) px += ax, py += ay, ax = -ax, ay = -ay;
if ( by < 0 ) px += bx, py += by, bx = -bx, by = -by;
qx = px + ax + bx;
/* Make a special fast check for rectangles. */
if ( (ay | bx) == 0 || (by | ax) == 0 )
{ int rx = fixed2int_var_rounded(px);
int ry = fixed2int_var_rounded(py);
/* Exactly one of (ax,bx) and one of (ay,by) is non-zero. */
int w = fixed2int_var_rounded(qx) - rx;
if ( w < 0 ) rx += w, w = -w;
return gx_fill_rectangle(rx, ry, w,
fixed2int_rounded(py + ay + by) - ry,
pdevc, pgs);
}
/* Not a rectangle. Ensure ay <= by. */
#define swap(r, s) (t = r, r = s, s = t)
if ( ay > by ) swap(ax, bx), swap(ay, by);
/* Compute the distance from p to the point on the line (p, p+b) */
/* whose Y coordinate is equal to ay. */
dx = ( ((bx < 0 ? -bx : bx) | ay) < 1L << (size_of(fixed) * 4 - 1) ?
bx * ay / by :
(fixed)((double)bx * ay / by)
);
if ( dx < ax ) pax = px + dx, qax = qx - ax, wx = ax - dx;
else pax = px + ax, qax = qx - dx, wx = dx - ax;
#define rounded_same(p, a) /* fixed_rounded(p) == fixed_rounded(p + a) */\
(fixed_fraction((p) + fixed_half) + (a) < fixed_1) /* know a >= 0 */
if ( !rounded_same(py, ay) )
{ code = gx_fill_trapezoid_fixed(px, fixed_0, py, pax, wx, ay,
false, pdevc, pgs);
if ( code < 0 ) return code;
}
py += ay;
dy = by - ay;
if ( !rounded_same(py, dy) )
{ code = gx_fill_trapezoid_fixed(pax, wx, py, qax, wx, dy,
false, pdevc, pgs);
if ( code < 0 ) return code;
}
py += dy;
if ( !rounded_same(py, ay) )
return gx_fill_trapezoid_fixed(qax, wx, py, qx, fixed_0, ay,
false, pdevc, pgs);
#undef rounded_same
#undef swap
return 0;
}
/* Default implementation of tile_rectangle */
int
gx_default_tile_rectangle(gx_device *dev, register const gx_tile_bitmap *tile,
int x, int y, int w, int h, gx_color_index color0, gx_color_index color1,
int px, int py)
{ /* Fill the rectangle in chunks */
int width = tile->size.x;
int height = tile->size.y;
int raster = tile->raster;
int rwidth = tile->rep_width;
int irx = ((rwidth & (rwidth - 1)) == 0 ? /* power of 2 */
(x + px) & (rwidth - 1) :
(x + px) % rwidth);
int ry = (y + py) % tile->rep_height;
int icw = width - irx;
int ch = height - ry;
byte *row = tile->data + ry * raster;
#define d_proc_mono dev_proc(dev, copy_mono)
dev_proc_copy_mono((*proc_mono));
#define d_proc_color dev_proc(dev, copy_color)
dev_proc_copy_color((*proc_color));
#define d_color_halftone\
(color0 == gx_no_color_index && color1 == gx_no_color_index)
int color_halftone;
#define get_color_info()\
if ( (color_halftone = d_color_halftone) ) proc_color = d_proc_color;\
else proc_mono = d_proc_mono
int code;
#ifdef DEBUG
if ( gs_debug_c('t') )
{ int ptx, pty;
const byte *ptp = tile->data;
dprintf3("[t]tile %dx%d raster=%d;",
tile->size.x, tile->size.y, tile->raster);
dprintf6(" x,y=%d,%d w,h=%d,%d p=%d,%d\n",
x, y, w, h, px, py);
for ( pty = 0; pty < tile->size.y; pty++ )
{ dprintf(" ");
for ( ptx = 0; ptx < tile->raster; ptx++ )
dprintf1("%3x", *ptp++);
}
dputc('\n');
}
#endif
/****** SHOULD ALSO PASS id IF COPYING A FULL TILE ******/
#define real_copy_tile(srcx, tx, ty, tw, th)\
code =\
(color_halftone ?\
(*proc_color)(dev, row, srcx, raster, gx_no_bitmap_id, tx, ty, tw, th) :\
(*proc_mono)(dev, row, srcx, raster, gx_no_bitmap_id, tx, ty, tw, th, color0, color1));\
if ( code < 0 ) return_error(code);\
return_if_interrupt()
#ifdef DEBUG
#define copy_tile(sx, tx, ty, tw, th)\
if ( gs_debug_c('t') )\
dprintf5(" copy sx=%d x=%d y=%d w=%d h=%d\n",\
sx, tx, ty, tw, th);\
real_copy_tile(sx, tx, ty, tw, th)
#else
#define copy_tile(sx, tx, ty, tw, th)\
real_copy_tile(sx, tx, ty, tw, th)
#endif
if ( icw >= w )
{ /* Narrow operation */
int ey, fey, cy;
if ( ch >= h )
{ /* Just one (partial) tile to transfer. */
#define color_halftone d_color_halftone
#define proc_color d_proc_color
#define proc_mono d_proc_mono
copy_tile(irx, x, y, w, h);
#undef proc_mono
#undef proc_color
#undef color_halftone
return 0;
}
get_color_info();
ey = y + h;
fey = ey - height;
copy_tile(irx, x, y, w, ch);
cy = y + ch;
row = tile->data;
do
{ ch = (cy > fey ? ey - cy : height);
copy_tile(irx, x, cy, w, ch);
}
while ( (cy += ch) < ey );
return 0;
}
get_color_info();
if ( ch >= h )
{ /* Shallow operation */
int ex = x + w;
int fex = ex - width;
int cx = x + icw;
copy_tile(irx, x, y, icw, h);
while ( cx <= fex )
{ copy_tile(0, cx, y, width, h);
cx += width;
}
if ( cx < ex )
{ copy_tile(0, cx, y, ex - cx, h);
}
}
else
{ /* Full operation */
int ex = x + w, ey = y + h;
int fex = ex - width, fey = ey - height;
int cx, cy;
for ( cy = y; ; )
{ copy_tile(irx, x, cy, icw, ch);
cx = x + icw;
while ( cx <= fex )
{ copy_tile(0, cx, cy, width, ch);
cx += width;
}
if ( cx < ex )
{ copy_tile(0, cx, cy, ex - cx, ch);
}
if ( (cy += ch) >= ey ) break;
ch = (cy > fey ? ey - cy : height);
row = tile->data;
}
}
#undef copy_tile
#undef real_copy_tile
return 0;
}
/* Draw a one-pixel-wide line. */
int
gx_draw_line_fixed(fixed ixf, fixed iyf, fixed itoxf, fixed itoyf,
const gx_device_color *pdevc, const gs_state *pgs)
{ int ix = fixed2int_var(ixf);
int iy = fixed2int_var(iyf);
int itox = fixed2int_var(itoxf);
int itoy = fixed2int_var(itoyf);
gx_device *dev;
return_if_interrupt();
if ( itoy == iy ) /* horizontal line */
{ return (ix <= itox ?
gx_fill_rectangle(ix, iy, itox - ix + 1, 1, pdevc, pgs) :
gx_fill_rectangle(itox, iy, ix - itox + 1, 1, pdevc, pgs)
);
}
if ( itox == ix ) /* vertical line */
{ return (iy <= itoy ?
gx_fill_rectangle(ix, iy, 1, itoy - iy + 1, pdevc, pgs) :
gx_fill_rectangle(ix, itoy, 1, iy - itoy + 1, pdevc, pgs)
);
}
if ( color_is_pure(pdevc) &&
(dev = gs_currentdevice_inline(pgs),
(*dev_proc(dev, draw_line))(dev, ix, iy, itox, itoy,
pdevc->colors.pure)) >= 0
)
return 0;
{ fixed h = itoyf - iyf;
fixed w = itoxf - ixf;
fixed tf;
#define fswap(a, b) tf = a, a = b, b = tf
if ( (w < 0 ? -w : w) <= (h < 0 ? -h : h) )
{ if ( h < 0 )
fswap(ixf, itoxf), fswap(iyf, itoyf),
h = -h;
return gx_fill_trapezoid_fixed(ixf - fixed_half, fixed_1, iyf,
itoxf - fixed_half, fixed_1, h,
false, pdevc, pgs);
}
else
{ if ( w < 0 )
fswap(ixf, itoxf), fswap(iyf, itoyf),
w = -w;
return gx_fill_trapezoid_fixed(iyf - fixed_half, fixed_1, ixf,
itoyf - fixed_half, fixed_1, w,
true, pdevc, pgs);
}
#undef fswap
}
}
/* A stub to force use of the standard procedure. */
int
gx_default_draw_line(gx_device *dev,
int x0, int y0, int x1, int y1, gx_color_index color)
{ return -1;
}
|