File: gxdraw.c

package info (click to toggle)
gs 3.33-7
  • links: PTS
  • area: main
  • in suites: hamm
  • size: 7,436 kB
  • ctags: 15,511
  • sloc: ansic: 92,150; asm: 684; sh: 486; makefile: 91
file content (505 lines) | stat: -rw-r--r-- 15,420 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/* Copyright (C) 1989, 1992, 1993, 1994 Aladdin Enterprises.  All rights reserved.
  
  This file is part of GNU Ghostscript.
  
  GNU Ghostscript is distributed in the hope that it will be useful, but
  WITHOUT ANY WARRANTY.  No author or distributor accepts responsibility to
  anyone for the consequences of using it or for whether it serves any
  particular purpose or works at all, unless he says so in writing.  Refer
  to the GNU Ghostscript General Public License for full details.
  
*/

/* gxdraw.c */
/* Primitive drawing routines for Ghostscript imaging library */
#include "math_.h"
#include "gx.h"
#include "gpcheck.h"
#include "gserrors.h"
#include "gxfixed.h"
#include "gxmatrix.h"
#include "gzstate.h"
#include "gxdraw.h"
#include "gzht.h"

/* Define the standard device color types. */
private struct_proc_enum_ptrs(dc_ht_binary_enum_ptrs);
private struct_proc_reloc_ptrs(dc_ht_binary_reloc_ptrs);
const gx_device_color_procs
  gx_dc_none =
    { gx_dc_no_load, gx_dc_no_fill_rectangle, 0, 0 },
  gx_dc_pure =
    { gx_dc_pure_load, gx_dc_pure_fill_rectangle, 0, 0 },
  gx_dc_ht_binary =
    { gx_dc_ht_binary_load, gx_dc_ht_binary_fill_rectangle,
      dc_ht_binary_enum_ptrs, dc_ht_binary_reloc_ptrs
    },
  gx_dc_ht_colored =
    { gx_dc_ht_colored_load, gx_dc_ht_colored_fill_rectangle, 0, 0 };
/* GC procedures */
#define cptr ((gx_device_color *)vptr)
private ENUM_PTRS_BEGIN(dc_ht_binary_enum_ptrs) return 0;
	case 0:
	{	gx_ht_tile *tile = cptr->colors.binary.b_tile;
		ENUM_RETURN(tile - tile->index);
	}
ENUM_PTRS_END
private RELOC_PTRS_BEGIN(dc_ht_binary_reloc_ptrs) {
	uint index = cptr->colors.binary.b_tile->index;
	RELOC_TYPED_OFFSET_PTR(gx_device_color, colors.binary.b_tile, index);
} RELOC_PTRS_END
#undef cptr

/* Null color */
int
gx_dc_no_load(gx_device_color *pdevc, const gs_state *pgs)
{	return 0;
}
int
gx_dc_no_fill_rectangle(const gx_device_color *pdevc, int x, int y,
  int w, int h, gx_device *dev, const gs_state *pgs)
{	return 0;
}

/* Pure color */
int
gx_dc_pure_load(gx_device_color *pdevc, const gs_state *pgs)
{	return 0;
}
int
gx_dc_pure_fill_rectangle(const gx_device_color *pdevc, int x, int y,
  int w, int h, gx_device *dev, const gs_state *pgs)
{	return (*dev_proc(dev, fill_rectangle))(dev, x, y, w, h,
						pdevc->colors.pure);
}

/* Binary halftone */
int
gx_dc_ht_binary_fill_rectangle(const gx_device_color *pdevc, int x, int y,
  int w, int h, gx_device *dev, const gs_state *pgs)
{	const gx_ht_order *porder = &pgs->dev_ht->order;
	return (*dev_proc(dev, tile_rectangle))(dev,
				&pdevc->colors.binary.b_tile->tile,
				x, y, w, h, pdevc->colors.binary.color[0],
				pdevc->colors.binary.color[1],
				porder->phase.x, porder->phase.y);
}

/*
 * Auxiliary procedures for computing a * b / c and a * b % c
 * when a, b, and c are all non-negative,
 * b < c, and a * b exceeds (or might exceed) the capacity of a long.
 * It's really annoying that C doesn't provide any way to get at
 * the double-length multiply/divide instructions that
 * the machine undoubtedly provides....
 *
 * Note that these routines are exported for the benefit of gxfill.c.
 */

fixed
fixed_mult_quo(fixed a, fixed b, fixed c)
{	return (fixed)floor((double)a * b / c);
}
fixed
fixed_mult_rem(fixed a, fixed b, fixed c)
{	double prod = (double)a * b;
	return (fixed)(prod - floor(prod / c) * c);
}

/* Fill a trapezoid.  Requires: wt >= 0, wb >= 0, h >= 0. */
/* Note that the arguments are fixeds, not ints! */
/* This is derived from Paul Haeberli's floating point algorithm. */
typedef struct trap_line_s {
	int di; fixed df;		/* dx/dy ratio */
	fixed ldi, ldf;			/* increment per scan line */
	fixed x, xf;			/* current value */
} trap_line;
int
gx_fill_trapezoid_fixed(fixed fx0, fixed fw0, fixed fy0,
  fixed fx1, fixed fw1, fixed fh, bool swap_axes,
  const gx_device_color *pdevc, const gs_state *pgs)
{	const fixed ymin = fixed_rounded(fy0) + fixed_half;
	const fixed ymax = fixed_rounded(fy0 + fh);
	int iy = fixed2int_var(ymin);
	const int iy1 = fixed2int_var(ymax);
	if ( iy >= iy1 ) return 0;	/* no scan lines to sample */
   {	trap_line l, r;
	int rxl, rxr, ry;
	const fixed dxl = fx1 - fx0;
	const fixed dxr = dxl + fw1 - fw0;
	const fixed yline = ymin - fy0;	/* partial pixel offset to */
					/* first line to sample */
	int fill_direct = color_is_pure(pdevc);
	gx_color_index cindex;
	gx_device *dev;
	dev_proc_fill_rectangle((*fill_rect));
	int code;
	
	if_debug2('z', "[z]y=[%d,%d]\n", iy, iy1);

	if ( fill_direct )
	  cindex = pdevc->colors.pure,
	  dev = gs_currentdevice_inline(pgs),
	  fill_rect = dev_proc(dev, fill_rectangle);
	return_if_interrupt();
	r.x = (l.x = fx0 + fixed_half) + fw0;
	ry = iy;

	/* If the rounded X values are the same on both sides, */
	/* we can save ourselves a *lot* of work. */
	if ( fixed_floor(l.x) == fixed_rounded(fx1) &&
	     fixed_floor(r.x) == fixed_rounded(fx1 + fw1)
	   )
	{	rxl = fixed2int_var(l.x);
		rxr = fixed2int_var(r.x);
		iy = iy1;
		if_debug2('z', "[z]rectangle, x=[%d,%d]\n", rxl, rxr);
		goto last;
	}

#define fill_trap_rect(x,y,w,h)\
  (fill_direct ?\
    (swap_axes ? (*fill_rect)(dev, y, x, h, w, cindex) :\
     (*fill_rect)(dev, x, y, w, h, cindex)) :\
   swap_axes ? gx_fill_rectangle(y, x, h, w, pdevc, pgs) :\
   gx_fill_rectangle(x, y, w, h, pdevc, pgs))

	/* Compute the dx/dy ratios. */
	/* dx# = dx#i + (dx#f / fh). */
#define compute_dx(tl, d)\
  if ( d >= 0 )\
   { if ( d < fh ) tl.di = 0, tl.df = d;\
     else tl.di = (int)(d / fh), tl.df = d - tl.di * fh, tl.x += yline * tl.di;\
   }\
  else\
   { if ( (tl.df = d + fh) >= 0	/* d >= -fh */ ) tl.di = -1, tl.x -= yline;\
     else tl.di = (int)-((fh - 1 - d) / fh), tl.df = d - tl.di * fh, tl.x += yline * tl.di;\
   }

	/* Compute the x offsets at the first scan line to sample. */
	/* We need to be careful in computing yline * dx#f {/,%} fh */
	/* because the multiplication may overflow.  We know that */
	/* all the quantities involved are non-negative, and that */
	/* yline is less than 1 (as a fixed, of course); this gives us */
	/* a cheap conservative check for overflow in the multiplication. */
#define ymult_limit (max_fixed / fixed_1)
#define ymult_quo(yl, dxxf)\
  (dxxf < ymult_limit ? yl * dxxf / fh : fixed_mult_quo(yl, dxxf, fh))
#define ymult_rem(yl, dxxf)\
  (dxxf < ymult_limit ? yl * dxxf % fh : fixed_mult_rem(yl, dxxf, fh))

	/* It's worth checking for dxl == dxr, since this is the case */
	/* for parallelograms (including stroked lines). */
	compute_dx(l, dxl);
	if ( dxr == dxl )
	   {	fixed fx = ymult_quo(yline, l.df);
		l.x += fx;
		if ( l.di == 0 )
			r.di = 0, r.df = l.df;
		else			/* too hard to do adjustments right */
			compute_dx(r, dxr);
		r.x += fx;
	   }
	else
	   {	l.x += ymult_quo(yline, l.df);
		compute_dx(r, dxr);
		r.x += ymult_quo(yline, r.df);
	   }
	rxl = fixed2int_var(l.x);
	rxr = fixed2int_var(r.x);

	/* Compute one line's worth of dx/dy. */
	/* dx# * fixed_1 = ld#i + (ld#f / fh). */
	/* We don't have to bother with this if */
	/* we're only sampling a single scan line. */
	if ( iy1 - iy == 1 )
	   {	iy++;
		goto last;
	   }
#define compute_ldx(tl)\
  if ( tl.df < ymult_limit )\
    tl.ldi = int2fixed(tl.di) + int2fixed(tl.df) / fh,\
    tl.ldf = int2fixed(tl.df) % fh,\
    tl.xf = yline * tl.df % fh - fh;\
  else\
    tl.ldi = int2fixed(tl.di) + fixed_mult_quo(fixed_1, tl.df, fh),\
    tl.ldf = fixed_mult_rem(fixed_1, tl.df, fh),\
    tl.xf = fixed_mult_rem(yline, tl.df, fh) - fh
	compute_ldx(l);
	if ( dxr == dxl )
		r.ldi = l.ldi, r.ldf = l.ldf, r.xf = l.xf;
	else
	   {	compute_ldx(r);
	   }
#undef compute_ldx

	while ( ++iy != iy1 )
	   {	int ixl, ixr;
#define step_line(tl)\
  tl.x += tl.ldi;\
  if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= fh, tl.x++;
		step_line(l);
		step_line(r);
#undef step_line
		ixl = fixed2int_var(l.x);
		ixr = fixed2int_var(r.x);
		if ( ixl != rxl || ixr != rxr )
		   {	code = fill_trap_rect(rxl, ry, rxr - rxl, iy - ry);
			if ( code < 0 ) goto xit;
			rxl = ixl, rxr = ixr, ry = iy;
		   }	
	   }
last:	code = fill_trap_rect(rxl, ry, rxr - rxl, iy - ry);
xit:	if ( code < 0 && fill_direct )
		return_error(code);
	return_if_interrupt();
	return code;
   }
}

/* Fill a parallelogram whose points are p, p+a, p+b, and p+a+b. */
/* We should swap axes to get best accuracy, but we don't. */
int
gx_fill_pgram_fixed(fixed px, fixed py, fixed ax, fixed ay,
  fixed bx, fixed by, const gx_device_color *pdevc,
  const gs_state *pgs)
{	fixed t;
	fixed dy, qx, dx, wx, pax, qax;
	int code;
	/* Ensure ay >= 0, by >= 0. */
	if ( ay < 0 ) px += ax, py += ay, ax = -ax, ay = -ay;
	if ( by < 0 ) px += bx, py += by, bx = -bx, by = -by;
	qx = px + ax + bx;
	/* Make a special fast check for rectangles. */
	if ( (ay | bx) == 0 || (by | ax) == 0 )
	{	int rx = fixed2int_var_rounded(px);
		int ry = fixed2int_var_rounded(py);
		/* Exactly one of (ax,bx) and one of (ay,by) is non-zero. */
		int w = fixed2int_var_rounded(qx) - rx;
		if ( w < 0 ) rx += w, w = -w;
		return gx_fill_rectangle(rx, ry, w,
				fixed2int_rounded(py + ay + by) - ry,
				pdevc, pgs);
	}
	/* Not a rectangle.  Ensure ay <= by. */
#define swap(r, s) (t = r, r = s, s = t)
	if ( ay > by ) swap(ax, bx), swap(ay, by);
	/* Compute the distance from p to the point on the line (p, p+b) */
	/* whose Y coordinate is equal to ay. */
	dx = ( ((bx < 0 ? -bx : bx) | ay) < 1L << (size_of(fixed) * 4 - 1) ?
		bx * ay / by :
		(fixed)((double)bx * ay / by)
	     );
	if ( dx < ax ) pax = px + dx, qax = qx - ax, wx = ax - dx;
	else pax = px + ax, qax = qx - dx, wx = dx - ax;
#define rounded_same(p, a) /* fixed_rounded(p) == fixed_rounded(p + a) */\
  (fixed_fraction((p) + fixed_half) + (a) < fixed_1) /* know a >= 0 */
	if ( !rounded_same(py, ay) )
	   {	code = gx_fill_trapezoid_fixed(px, fixed_0, py, pax, wx, ay,
					       false, pdevc, pgs);
		if ( code < 0 ) return code;
	   }
	py += ay;
	dy = by - ay;
	if ( !rounded_same(py, dy) )
	   {	code = gx_fill_trapezoid_fixed(pax, wx, py, qax, wx, dy,
					       false, pdevc, pgs);
		if ( code < 0 ) return code;
	   }
	py += dy;
	if ( !rounded_same(py, ay) )
		return gx_fill_trapezoid_fixed(qax, wx, py, qx, fixed_0, ay,
					       false, pdevc, pgs);
#undef rounded_same
#undef swap
	return 0;
}

/* Default implementation of tile_rectangle */
int
gx_default_tile_rectangle(gx_device *dev, register const gx_tile_bitmap *tile,
  int x, int y, int w, int h, gx_color_index color0, gx_color_index color1,
  int px, int py)
{	/* Fill the rectangle in chunks */
	int width = tile->size.x;
	int height = tile->size.y;
	int raster = tile->raster;
	int rwidth = tile->rep_width;
	int irx = ((rwidth & (rwidth - 1)) == 0 ?	/* power of 2 */
		(x + px) & (rwidth - 1) :
		(x + px) % rwidth);
	int ry = (y + py) % tile->rep_height;
	int icw = width - irx;
	int ch = height - ry;
	byte *row = tile->data + ry * raster;
#define d_proc_mono dev_proc(dev, copy_mono)
	dev_proc_copy_mono((*proc_mono));
#define d_proc_color dev_proc(dev, copy_color)
	dev_proc_copy_color((*proc_color));
#define d_color_halftone\
		(color0 == gx_no_color_index && color1 == gx_no_color_index)
	int color_halftone;
#define get_color_info()\
  if ( (color_halftone = d_color_halftone) ) proc_color = d_proc_color;\
  else proc_mono = d_proc_mono
	int code;

#ifdef DEBUG
if ( gs_debug_c('t') )
   {	int ptx, pty;
	const byte *ptp = tile->data;
	dprintf3("[t]tile %dx%d raster=%d;",
		tile->size.x, tile->size.y, tile->raster);
	dprintf6(" x,y=%d,%d w,h=%d,%d p=%d,%d\n",
		x, y, w, h, px, py);
	for ( pty = 0; pty < tile->size.y; pty++ )
	   {	dprintf("   ");
		for ( ptx = 0; ptx < tile->raster; ptx++ )
			dprintf1("%3x", *ptp++);
	   }
	dputc('\n');
   }
#endif
/****** SHOULD ALSO PASS id IF COPYING A FULL TILE ******/
#define real_copy_tile(srcx, tx, ty, tw, th)\
  code =\
    (color_halftone ?\
     (*proc_color)(dev, row, srcx, raster, gx_no_bitmap_id, tx, ty, tw, th) :\
     (*proc_mono)(dev, row, srcx, raster, gx_no_bitmap_id, tx, ty, tw, th, color0, color1));\
  if ( code < 0 ) return_error(code);\
  return_if_interrupt()
#ifdef DEBUG
#define copy_tile(sx, tx, ty, tw, th)\
  if ( gs_debug_c('t') )\
	dprintf5("   copy sx=%d x=%d y=%d w=%d h=%d\n",\
		 sx, tx, ty, tw, th);\
  real_copy_tile(sx, tx, ty, tw, th)
#else
#define copy_tile(sx, tx, ty, tw, th)\
  real_copy_tile(sx, tx, ty, tw, th)
#endif
	if ( icw >= w )
	   {	/* Narrow operation */
		int ey, fey, cy;
		if ( ch >= h )
		   {	/* Just one (partial) tile to transfer. */
#define color_halftone d_color_halftone
#define proc_color d_proc_color
#define proc_mono d_proc_mono
			copy_tile(irx, x, y, w, h);
#undef proc_mono
#undef proc_color
#undef color_halftone
			return 0;
		   }
		get_color_info();
		ey = y + h;
		fey = ey - height;
		copy_tile(irx, x, y, w, ch);
		cy = y + ch;
		row = tile->data;
		do
		   {	ch = (cy > fey ? ey - cy : height);
			copy_tile(irx, x, cy, w, ch);
		   }
		while ( (cy += ch) < ey );
		return 0;
	   }
	get_color_info();
	if ( ch >= h )
	   {	/* Shallow operation */
		int ex = x + w;
		int fex = ex - width;
		int cx = x + icw;
		copy_tile(irx, x, y, icw, h);
		while ( cx <= fex )
		   {	copy_tile(0, cx, y, width, h);
			cx += width;
		   }
		if ( cx < ex )
		   {	copy_tile(0, cx, y, ex - cx, h);
		   }
	   }
	else
	   {	/* Full operation */
		int ex = x + w, ey = y + h;
		int fex = ex - width, fey = ey - height;
		int cx, cy;
		for ( cy = y; ; )
		   {	copy_tile(irx, x, cy, icw, ch);
			cx = x + icw;
			while ( cx <= fex )
			   {	copy_tile(0, cx, cy, width, ch);
				cx += width;
			   }
			if ( cx < ex )
			   {	copy_tile(0, cx, cy, ex - cx, ch);
			   }
			if ( (cy += ch) >= ey ) break;
			ch = (cy > fey ? ey - cy : height);
			row = tile->data;
		   }
	   }
#undef copy_tile
#undef real_copy_tile
	return 0;
}

/* Draw a one-pixel-wide line. */
int
gx_draw_line_fixed(fixed ixf, fixed iyf, fixed itoxf, fixed itoyf,
  const gx_device_color *pdevc, const gs_state *pgs)
{	int ix = fixed2int_var(ixf);
	int iy = fixed2int_var(iyf);
	int itox = fixed2int_var(itoxf);
	int itoy = fixed2int_var(itoyf);
	gx_device *dev;
	return_if_interrupt();
	if ( itoy == iy )		/* horizontal line */
	  { return (ix <= itox ?
		    gx_fill_rectangle(ix, iy, itox - ix + 1, 1, pdevc, pgs) :
		    gx_fill_rectangle(itox, iy, ix - itox + 1, 1, pdevc, pgs)
		    );
	  }
	if ( itox == ix )		/* vertical line */
	  { return (iy <= itoy ?
		    gx_fill_rectangle(ix, iy, 1, itoy - iy + 1, pdevc, pgs) :
		    gx_fill_rectangle(ix, itoy, 1, iy - itoy + 1, pdevc, pgs)
		    );
	  }
	if ( color_is_pure(pdevc) &&
	    (dev = gs_currentdevice_inline(pgs),
	     (*dev_proc(dev, draw_line))(dev, ix, iy, itox, itoy,
					 pdevc->colors.pure)) >= 0
	   )
	  return 0;
	{ fixed h = itoyf - iyf;
	  fixed w = itoxf - ixf;
	  fixed tf;
#define fswap(a, b) tf = a, a = b, b = tf
	  if ( (w < 0 ? -w : w) <= (h < 0 ? -h : h) )
	    { if ( h < 0 )
		fswap(ixf, itoxf), fswap(iyf, itoyf),
		h = -h;
	      return gx_fill_trapezoid_fixed(ixf - fixed_half, fixed_1, iyf,
					     itoxf - fixed_half, fixed_1, h,
					     false, pdevc, pgs);
	    }
	  else
	    { if ( w < 0 )
		fswap(ixf, itoxf), fswap(iyf, itoyf),
		w = -w;
	      return gx_fill_trapezoid_fixed(iyf - fixed_half, fixed_1, ixf,
					     itoyf - fixed_half, fixed_1, w,
					     true, pdevc, pgs);
	    }
#undef fswap
	}
}

/* A stub to force use of the standard procedure. */
int
gx_default_draw_line(gx_device *dev,
  int x0, int y0, int x1, int y1, gx_color_index color)
{	return -1;
}