1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
|
/* Copyright (C) 1992, 1993 Aladdin Enterprises. All rights reserved.
This file is part of GNU Ghostscript.
GNU Ghostscript is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to
anyone for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing. Refer
to the GNU Ghostscript General Public License for full details.
*/
/* gxpcopy.c */
/* Path copying and flattening for Ghostscript library */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsmatrix.h" /* for gscoord.h */
#include "gscoord.h"
#include "gxfixed.h"
#include "gxarith.h"
#include "gzline.h"
#include "gzpath.h"
/* Forward declarations */
private int copy_path(P4(const gx_path *, gx_path *, fixed, bool));
private int flatten_internal(P8(gx_path *,
fixed, fixed, fixed, fixed, fixed, fixed, fixed));
private int flatten_sample(P8(gx_path *, int,
fixed, fixed, fixed, fixed, fixed, fixed));
/* Copy a path */
int
gx_path_copy(const gx_path *ppath_old, gx_path *ppath, bool init)
{ return copy_path(ppath_old, ppath, max_fixed, init);
}
/* Flatten a path. */
int
gx_path_flatten(const gx_path *ppath_old, gx_path *ppath, floatp flatness,
bool in_BuildCharGlyph)
{ return copy_path(ppath_old, ppath,
(in_BuildCharGlyph ? fixed_0 : float2fixed(flatness)),
true);
}
/* Add a flattened curve to a path. */
int
gx_path_add_flattened_curve(gx_path *ppath,
fixed x1, fixed y1, fixed x2, fixed y2, fixed x3, fixed y3,
floatp flatness)
{ return flatten_internal(ppath, x1, y1, x2, y2, x3, y3,
float2fixed(flatness));
}
/* Copy a path, optionally flattening it. */
/* If the copy fails, free the new path. */
private int
copy_path(const gx_path *ppath_old, gx_path *ppath, fixed fixed_flat,
bool init)
{ gx_path old;
const segment *pseg;
int code;
#ifdef DEBUG
if ( gs_debug_c('p') )
gx_dump_path(ppath_old, "before copy_path");
#endif
old = *ppath_old;
if ( init )
gx_path_init(ppath, ppath_old->memory);
pseg = (const segment *)(old.first_subpath);
while ( pseg )
{ switch ( pseg->type )
{
case s_start:
code = gx_path_add_point(ppath, pseg->pt.x, pseg->pt.y);
break;
case s_curve:
{ curve_segment *pc = (curve_segment *)pseg;
if ( fixed_flat == max_fixed ) /* don't flatten */
code = gx_path_add_curve(ppath,
pc->p1.x, pc->p1.y,
pc->p2.x, pc->p2.y,
pc->pt.x, pc->pt.y);
else
code = flatten_internal(ppath,
pc->p1.x, pc->p1.y,
pc->p2.x, pc->p2.y,
pc->pt.x, pc->pt.y,
fixed_flat);
break;
}
case s_line:
code = gx_path_add_line(ppath, pseg->pt.x, pseg->pt.y);
break;
case s_line_close:
code = gx_path_close_subpath(ppath);
break;
default: /* can't happen */
code = gs_note_error(gs_error_unregistered);
}
if ( code )
{ gx_path_release(ppath);
if ( ppath == ppath_old )
*ppath = old;
return code;
}
pseg = pseg->next;
}
if ( old.subpath_open < 0 )
gx_path_add_point(ppath, old.position.x, old.position.y);
#ifdef DEBUG
if ( gs_debug_c('p') )
gx_dump_path(ppath, "after copy_path");
#endif
return 0;
}
/*
* To calculate how many points to sample along a path in order to
* approximate it to the desired degree of flatness, we define
* dist((x,y)) = abs(x) + abs(y);
* then the number of points we need is
* N = 1 + sqrt(3/4 * D / flatness),
* where
* D = max(dist(p0 - 2*p1 + p2), dist(p1 - 2*p2 + p3)).
* Since we are going to use a power of 2 for the number of intervals,
* we can avoid the square root by letting
* N = 1 + 2^(ceiling(log2(3/4 * D / flatness) / 2)).
* (Reference: DEC Paris Research Laboratory report #1, May 1989.)
*
* We treat two cases specially. First, if the curve is very
* short, we halve the flatness, to avoid turning short shallow curves
* into short straight lines. Second, if the curve forms part of a
* character, or the flatness is less than half a pixel, we let
* N = 1 + 2 * max(abs(x3-x0), abs(y3-y0)).
* This is probably too conservative, but it produces good results.
*/
private int
flatten_internal(gx_path *ppath, fixed x1, fixed y1, fixed x2, fixed y2,
fixed x3, fixed y3, fixed fixed_flat)
{ const fixed
x0 = ppath->position.x,
y0 = ppath->position.y;
fixed
x03 = x0 - x3,
y03 = y0 - y3;
int k;
if ( x03 < 0 ) x03 = -x03;
if ( y03 < 0 ) y03 = -y03;
if ( (x03 | y03) < int2fixed(16) )
fixed_flat >>= 1;
if ( fixed_flat < fixed_half )
{ /* Use the conservative method. */
fixed m = max(x03, y03);
for ( k = 1; m > fixed_1; )
k++, m >>= 1;
}
else
{ const fixed
x12 = x1 - x2,
y12 = y1 - y2,
dx0 = x0 - x1 - x12,
dy0 = y0 - y1 - y12,
dx1 = x12 - x2 + x3,
dy1 = y12 - y2 + y3,
adx0 = any_abs(dx0),
ady0 = any_abs(dy0),
adx1 = any_abs(dx1),
ady1 = any_abs(dy1);
fixed
d = max(adx0, adx1) + max(ady0, ady1);
fixed q;
if_debug6('2', "[2]d01=%g,%g d12=%g,%g d23=%g,%g\n",
fixed2float(x1 - x0), fixed2float(y1 - y0),
fixed2float(-x12), fixed2float(-y12),
fixed2float(x3 - x2), fixed2float(y3 - y2));
if_debug2('2', " D=%f, flat=%f,",
fixed2float(d), fixed2float(fixed_flat));
d -= d >> 2; /* 3/4 * D */
if ( d < (fixed)1 << (sizeof(fixed) * 8 - _fixed_shift - 1) )
q = (d << _fixed_shift) / fixed_flat;
else
q = float2fixed((float)d / fixed_flat);
/* Now we want to set k = ceiling(log2(q) / 2). */
for ( k = 0; q > fixed_1; )
k++, q >>= 2;
if_debug1('2', " k=%d\n", k);
}
return flatten_sample(ppath, k, x1, y1, x2, y2, x3, y3);
}
/* Maximum number of points for sampling if we want accurate rasterizing. */
/* 2^(k_sample_max*3)-1 must fit into a uint with a bit to spare. */
#define k_sample_max ((size_of(int) * 8 - 1) / 3)
/* Flatten a segment of the path by repeated sampling. */
/* 2^k is the number of lines to produce (i.e., the number of points - 1, */
/* including the endpoints); we require k >= 1. */
/* If k or any of the coefficient values are too large, */
/* use recursive subdivision to whittle them down. */
private int
flatten_sample(gx_path *ppath, int k,
fixed x1, fixed y1, fixed x2, fixed y2, fixed x3, fixed y3)
{ fixed x0, y0;
fixed cx, bx, ax, cy, by, ay;
fixed ptx, pty;
fixed x, y;
/*
* If all the coefficients lie between min_fast and max_fast,
* we can do everything in fixed point. In this case we compute
* successive values by finite differences, using the formulas:
x(t) =
a*t^3 + b*t^2 + c*t + d =>
dx(t) = x(t+e)-x(t) =
a*(3*t^2*e + 3*t*e^2 + e^3) + b*(2*t*e + e^2) + c*e =
(3*a*e)*t^2 + (3*a*e^2 + 2*b*e)*t + (a*e^3 + b*e^2 + c*e) =>
d2x(t) = dx(t+e)-dx(t) =
(3*a*e)*(2*t*e + e^2) + (3*a*e^2 + 2*b*e)*e =
(6*a*e^2)*t + (6*a*e^3 + 2*b*e^2) =>
d3x(t) = d2x(t+e)-d2x(t) =
6*a*e^3;
x(0) = d, dx(0) = (a*e^3 + b*e^2 + c*e),
d2x(0) = 6*a*e^3 + 2*b*e^2;
* In these formulas, e = 1/2^k; of course, there are separate
* computations for the x and y values.
*/
uint i;
/*
* We do exact rational arithmetic to avoid accumulating error.
* Each quantity is represented as I+R/M, where I is an "integer"
* and the "remainder" R lies in the range 0 <= R < M=2^(3*k).
* Note that R may temporarily exceed M; for this reason,
* we require that M have at least one free high-order bit.
* To reduce the number of variables, we don't actually compute M,
* only M-1 (rmask).
*/
uint rmask; /* M-1 */
fixed idx, idy, id2x, id2y, id3x, id3y; /* I */
uint rx, ry, rdx, rdy, rd2x, rd2y, rd3x, rd3y; /* R */
gs_fixed_point *ppt;
#define max_points 50 /* arbitrary */
gs_fixed_point points[max_points + 1];
top: x0 = ppath->position.x;
y0 = ppath->position.y;
#ifdef DEBUG
if ( gs_debug_c('3') )
dprintf4("[3]x0=%f y0=%f x1=%f y1=%f\n",
fixed2float(x0), fixed2float(y0),
fixed2float(x1), fixed2float(y1)),
dprintf4(" x2=%f y2=%f x3=%f y3=%f\n",
fixed2float(x2), fixed2float(y2),
fixed2float(x3), fixed2float(y3));
#endif
{ /* We spell out some multiplies by 3, */
/* for the benefit of compilers that don't optimize this. */
fixed x01, x12, y01, y12;
x01 = x1 - x0;
cx = (x01 << 1) + x01; /* 3*(x1-x0) */
x12 = x2 - x1;
bx = (x12 << 1) + x12 - cx; /* 3*(x2-2*x1+x0) */
ax = x3 - bx - cx - x0; /* x3-3*x2+3*x1-x0 */
y01 = y1 - y0;
cy = (y01 << 1) + y01;
y12 = y2 - y1;
by = (y12 << 1) + y12 - cy;
ay = y3 - by - cy - y0;
}
if_debug6('3', "[3]ax=%f bx=%f cx=%f\n ay=%f by=%f cy=%f\n",
fixed2float(ax), fixed2float(bx), fixed2float(cx),
fixed2float(ay), fixed2float(by), fixed2float(cy));
#define max_fast (max_fixed / 6)
#define min_fast (-max_fast)
#define in_range(v) (v < max_fast && v > min_fast)
if ( k == 0 )
{ /* The curve is very short, or anomalous in some way. */
/* Just add a line and exit. */
return gx_path_add_line(ppath, x3, y3);
}
if ( k <= k_sample_max &&
in_range(ax) && in_range(ay) &&
in_range(bx) && in_range(by) &&
in_range(cx) && in_range(cy)
)
{ x = x0, y = y0;
rx = ry = 0;
ppt = points;
/* Fast check for n == 3, a common special case */
/* for small characters. */
if ( k == 1 )
{
#define poly2(a,b,c)\
arith_rshift_1(arith_rshift_1(arith_rshift_1(a) + b) + c)
x += poly2(ax, bx, cx);
y += poly2(ay, by, cy);
#undef poly2
if_debug2('3', "[3]dx=%f, dy=%f\n",
fixed2float(x - x0), fixed2float(y - y0));
if_debug3('3', "[3]%s x=%g, y=%g\n",
(((x ^ x0) | (y ^ y0)) & float2fixed(-0.5) ?
"add" : "skip"),
fixed2float(x), fixed2float(y));
if ( ((x ^ x0) | (y ^ y0)) & float2fixed(-0.5) )
ppt->x = ptx = x,
ppt->y = pty = y,
ppt++;
goto last;
}
else
{ fixed bx2 = bx << 1, by2 = by << 1;
fixed ax6 = ((ax << 1) + ax) << 1,
ay6 = ((ay << 1) + ay) << 1;
#define adjust_rem(r, q)\
if ( r > rmask ) q ++, r &= rmask
const int k2 = k << 1;
const int k3 = k2 + k;
rmask = (1 << k3) - 1;
/* We can compute all the remainders as ints, */
/* because we know they don't exceed M. */
/* cx/y terms */
idx = arith_rshift(cx, k),
idy = arith_rshift(cy, k);
rdx = ((uint)cx << k2) & rmask,
rdy = ((uint)cy << k2) & rmask;
/* bx/y terms */
id2x = arith_rshift(bx2, k2),
id2y = arith_rshift(by2, k2);
rd2x = ((uint)bx2 << k) & rmask,
rd2y = ((uint)by2 << k) & rmask;
idx += arith_rshift_1(id2x),
idy += arith_rshift_1(id2y);
rdx += ((uint)bx << k) & rmask,
rdy += ((uint)by << k) & rmask;
adjust_rem(rdx, idx);
adjust_rem(rdy, idy);
/* ax/y terms */
idx += arith_rshift(ax, k3),
idy += arith_rshift(ay, k3);
rdx += (uint)ax & rmask,
rdy += (uint)ay & rmask;
adjust_rem(rdx, idx);
adjust_rem(rdy, idy);
id2x += id3x = arith_rshift(ax6, k3),
id2y += id3y = arith_rshift(ay6, k3);
rd2x += rd3x = (uint)ax6 & rmask,
rd2y += rd3y = (uint)ay6 & rmask;
adjust_rem(rd2x, id2x);
adjust_rem(rd2y, id2y);
#undef adjust_rem
}
}
else
{ /* Curve is too long. Break into two pieces and recur. */
/* Algorithm is from "The Beta2-split: A special case of */
/* the Beta-spline Curve and Surface Representation," */
/* B. A. Barsky and A. D. DeRose, IEEE, 1985, */
/* courtesy of Crispin Goswell. */
/* We have to define midpoint carefully to avoid overflow. */
/* (If it overflows, something really pathological is going */
/* on, but we could get infinite recursion that way....) */
#define midpoint(a,b)\
(arith_rshift_1(a) + arith_rshift_1(b) + ((a) & (b) & 1))
k--;
{ fixed x0 = ppath->position.x, y0 = ppath->position.y;
fixed x01 = midpoint(x0, x1), y01 = midpoint(y0, y1);
fixed x12 = midpoint(x1, x2), y12 = midpoint(y1, y2);
fixed x02 = midpoint(x01, x12), y02 = midpoint(y01, y12);
int code;
/* Update x/y1 and x/y2 now for the second half. */
x2 = midpoint(x2, x3), y2 = midpoint(y2, y3);
x1 = midpoint(x12, x2), y1 = midpoint(y12, y2);
code = flatten_sample(ppath, k, x01, y01, x02, y02,
midpoint(x02, x1), midpoint(y02, y1));
if ( code < 0 ) return code;
}
goto top;
}
if_debug1('2', "[2]sampling k=%d\n", k);
ptx = x0, pty = y0;
for ( i = (1 << k) - 1; ; )
{ int code;
#ifdef DEBUG
if ( gs_debug_c('3') )
dprintf4("[3]dx=%f+%d, dy=%f+%d\n",
fixed2float(idx), rdx,
fixed2float(idy), rdy),
dprintf4(" d2x=%f+%d, d2y=%f+%d\n",
fixed2float(id2x), rd2x,
fixed2float(id2y), rd2y),
dprintf4(" d3x=%f+%d, d3y=%f+%d\n",
fixed2float(id3x), rd3x,
fixed2float(id3y), rd3y);
#endif
#define accum(i, r, di, dr)\
if ( (r += dr) > rmask ) r &= rmask, i += di + 1;\
else i += di
accum(x, rx, idx, rdx);
accum(y, ry, idy, rdy);
if_debug3('3', "[3]%s x=%g, y=%g\n",
(((x ^ ptx) | (y ^ pty)) & float2fixed(-0.5) ?
"add" : "skip"),
fixed2float(x), fixed2float(y));
/* Skip very short segments */
if ( ((x ^ ptx) | (y ^ pty)) & float2fixed(-0.5) )
{ if ( ppt == &points[max_points] )
{ if ( (code = gx_path_add_lines(ppath, points, max_points)) < 0 )
return code;
ppt = points;
}
ppt->x = ptx = x;
ppt->y = pty = y;
ppt++;
}
if ( --i == 0 )
break; /* don't bother with last accum */
accum(idx, rdx, id2x, rd2x);
accum(id2x, rd2x, id3x, rd3x);
accum(idy, rdy, id2y, rd2y);
accum(id2y, rd2y, id3y, rd3y);
#undef accum
}
last: if_debug2('3', "[3]last x=%g, y=%g\n",
fixed2float(x3), fixed2float(y3));
ppt->x = x3, ppt->y = y3;
return gx_path_add_lines(ppath, points, (int)(ppt + 1 - points));
}
/*
* The rest of this file is an analysis that will eventually
* allow us to rasterize curves on the fly, by finding points
* where Y reaches a local maximum or minimum, which allows us to
* divide the curve into locally Y-monotonic sections.
*/
/*
Let y(t) = a*t^3 + b*t^2 + c*t + d, 0 <= t <= 1.
Then dy(t) = 3*a*t^2 + 2*b*t + c.
y(t) has a local minimum or maximum (or inflection point)
precisely where dy(t) = 0. Now the roots of dy(t) are
( -2*b +/- sqrt(4*b^2 - 12*a*c) ) / 6*a
= ( -b +/- sqrt(b*2 - 3*a*c) ) / 3*a
(Note that real roots exist iff b^2 >= 3*a*c.)
We want to know if these lie in the range (0..1).
(We don't care about the endpoints.) Call such a root
a "valid zero." Since computing the roots is expensive, we would
like to have a cheap a priori test as to whether they exist.
We proceed as follows:
If sign(3*a + 2*b + c) ~= sign(c), a valid zero exists,
since dy(0) and dy(1) have opposite signs and hence
dy(t) must be zero somewhere in the interval [0..1].
If sign(a) = sign(b), no valid zero exists,
since dy is monotonic on [0..1] and has the same sign
at both endpoints.
Otherwise, dy(t) may be non-monotonic on [0..1]; it has valid zeros
iff there is an extremum in this interval and the extremum
is of the opposite sign from c.
To find this out, we look for the local extremum of dy(t) by observing
d2y(t) = 6*a*t + 2*b
which has a zero only at
t1 = -b / 3*a
Now if t1 <= 0 or t1 >= 1, no valid zero exists. Otherwise,
we compute
dy(t1) = c - (b^2 / 3*a)
Then a valid zero exists (at t1) iff sign(dy(t1)) ~= sign(c).
*/
/* Expand a dashed path into explicit segments. */
/* The path contains no curves. */
private int subpath_expand_dashes(P3(const subpath *, gx_path *, gs_state *));
int
gx_path_expand_dashes(const gx_path *ppath_old, gx_path *ppath, gs_state *pgs)
{ const subpath *psub;
if ( gs_currentdash_length(pgs) == 0 )
return gx_path_copy(ppath_old, ppath, true);
gx_path_init(ppath, ppath_old->memory);
for ( psub = ppath_old->first_subpath; psub != 0;
psub = (const subpath *)psub->last->next
)
{ int code = subpath_expand_dashes(psub, ppath, pgs);
if ( code < 0 )
{ gx_path_release(ppath);
return code;
}
}
return 0;
}
private int
subpath_expand_dashes(const subpath *psub, gx_path *ppath, gs_state *pgs)
{ const gx_dash_params *dash = &gs_currentlineparams(pgs)->dash;
const float *pattern = dash->pattern;
int count, ink_on, index;
float dist_left;
fixed x0 = psub->pt.x, y0 = psub->pt.y;
fixed x, y;
const segment *pseg;
int wrap = (dash->init_ink_on && psub->is_closed ? -1 : 0);
int drawing = wrap;
int code;
if ( (code = gx_path_add_point(ppath, x0, y0)) < 0 )
return code;
/* To do the right thing at the beginning of a closed path, */
/* we have to skip any initial line, and then redo it at */
/* the end of the path. Drawing = -1 while skipping, */
/* 0 while drawing normally, and 1 on the second round. */
top: count = dash->pattern_size;
ink_on = dash->init_ink_on;
index = dash->init_index;
dist_left = dash->init_dist_left;
x = x0, y = y0;
pseg = (const segment *)psub;
while ( (pseg = pseg->next) != 0 && pseg->type != s_start )
{ fixed sx = pseg->pt.x, sy = pseg->pt.y;
fixed udx = sx - x, udy = sy - y;
float length, dx, dy;
float dist;
if ( !(udx | udy) ) /* degenerate */
dx = 0, dy = 0, length = 0;
else
{ gs_point d;
dx = udx, dy = udy; /* scaled as fixed */
gs_idtransform(pgs, dx, dy, &d);
length = hypot(d.x, d.y) * (1 / (float)int2fixed(1));
}
dist = length;
while ( dist > dist_left )
{ /* We are using up the dash element */
float fraction = dist_left / length;
fixed nx = x + (fixed)(dx * fraction);
fixed ny = y + (fixed)(dy * fraction);
if ( ink_on )
{ if ( drawing >= 0 )
code = gx_path_add_line(ppath, nx, ny);
}
else
{ if ( drawing > 0 ) return 0; /* done */
code = gx_path_add_point(ppath, nx, ny);
drawing = 0;
}
if ( code < 0 ) return code;
dist -= dist_left;
ink_on = !ink_on;
if ( ++index == count ) index = 0;
dist_left = pattern[index];
x = nx, y = ny;
}
dist_left -= dist;
/* Handle the last dash of a segment. */
if ( ink_on )
{ if ( drawing >= 0 )
code =
(pseg->type == s_line_close && drawing > 0 ?
gx_path_close_subpath(ppath) :
gx_path_add_line(ppath, sx, sy));
}
else
{ if ( drawing > 0 ) return 0; /* done */
code = gx_path_add_point(ppath, sx, sy);
drawing = 0;
}
if ( code < 0 ) return code;
x = sx, y = sy;
}
/* Check for wraparound. */
if ( wrap && drawing <= 0 )
{ /* We skipped some initial lines. */
/* Go back and do them now. */
drawing = 1;
goto top;
}
return 0;
}
|