File: gxpcopy.c

package info (click to toggle)
gs 3.33-7
  • links: PTS
  • area: main
  • in suites: hamm
  • size: 7,436 kB
  • ctags: 15,511
  • sloc: ansic: 92,150; asm: 684; sh: 486; makefile: 91
file content (574 lines) | stat: -rw-r--r-- 18,348 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
/* Copyright (C) 1992, 1993 Aladdin Enterprises.  All rights reserved.
  
  This file is part of GNU Ghostscript.
  
  GNU Ghostscript is distributed in the hope that it will be useful, but
  WITHOUT ANY WARRANTY.  No author or distributor accepts responsibility to
  anyone for the consequences of using it or for whether it serves any
  particular purpose or works at all, unless he says so in writing.  Refer
  to the GNU Ghostscript General Public License for full details.
  
*/

/* gxpcopy.c */
/* Path copying and flattening for Ghostscript library */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsmatrix.h"			/* for gscoord.h */
#include "gscoord.h"
#include "gxfixed.h"
#include "gxarith.h"
#include "gzline.h"
#include "gzpath.h"

/* Forward declarations */
private int copy_path(P4(const gx_path *, gx_path *, fixed, bool));
private int flatten_internal(P8(gx_path *,
  fixed, fixed, fixed, fixed, fixed, fixed, fixed));
private int flatten_sample(P8(gx_path *, int,
  fixed, fixed, fixed, fixed, fixed, fixed));

/* Copy a path */
int
gx_path_copy(const gx_path *ppath_old, gx_path *ppath, bool init)
{	return copy_path(ppath_old, ppath, max_fixed, init);
}

/* Flatten a path. */
int
gx_path_flatten(const gx_path *ppath_old, gx_path *ppath, floatp flatness,
  bool in_BuildCharGlyph)
{	return copy_path(ppath_old, ppath,
			 (in_BuildCharGlyph ? fixed_0 : float2fixed(flatness)),
			 true);
}

/* Add a flattened curve to a path. */
int
gx_path_add_flattened_curve(gx_path *ppath,
  fixed x1, fixed y1, fixed x2, fixed y2, fixed x3, fixed y3,
  floatp flatness)
{	return flatten_internal(ppath, x1, y1, x2, y2, x3, y3,
				float2fixed(flatness));
}

/* Copy a path, optionally flattening it. */
/* If the copy fails, free the new path. */
private int
copy_path(const gx_path *ppath_old, gx_path *ppath, fixed fixed_flat,
  bool init)
{	gx_path old;
	const segment *pseg;
	int code;
#ifdef DEBUG
if ( gs_debug_c('p') )
	gx_dump_path(ppath_old, "before copy_path");
#endif
	old = *ppath_old;
	if ( init )
		gx_path_init(ppath, ppath_old->memory);
	pseg = (const segment *)(old.first_subpath);
	while ( pseg )
	   {	switch ( pseg->type )
		   {
		case s_start:
			code = gx_path_add_point(ppath, pseg->pt.x, pseg->pt.y);
			break;
		case s_curve:
		   {	curve_segment *pc = (curve_segment *)pseg;
			if ( fixed_flat == max_fixed )	/* don't flatten */
				code = gx_path_add_curve(ppath,
					pc->p1.x, pc->p1.y,
					pc->p2.x, pc->p2.y,
					pc->pt.x, pc->pt.y);
			else
				code = flatten_internal(ppath,
					pc->p1.x, pc->p1.y,
					pc->p2.x, pc->p2.y,
					pc->pt.x, pc->pt.y,
					fixed_flat);
			break;
		   }
		case s_line:
			code = gx_path_add_line(ppath, pseg->pt.x, pseg->pt.y);
			break;
		case s_line_close:
			code = gx_path_close_subpath(ppath);
			break;
		default:		/* can't happen */
			code = gs_note_error(gs_error_unregistered);
		   }
		if ( code )
		   {	gx_path_release(ppath);
			if ( ppath == ppath_old )
				*ppath = old;
			return code;
		   }
		pseg = pseg->next;
	}
	if ( old.subpath_open < 0 )
		gx_path_add_point(ppath, old.position.x, old.position.y);
#ifdef DEBUG
if ( gs_debug_c('p') )
	gx_dump_path(ppath, "after copy_path");
#endif
	return 0;
}

/*
 * To calculate how many points to sample along a path in order to
 * approximate it to the desired degree of flatness, we define
 *	dist((x,y)) = abs(x) + abs(y);
 * then the number of points we need is
 *	N = 1 + sqrt(3/4 * D / flatness),
 * where
 *	D = max(dist(p0 - 2*p1 + p2), dist(p1 - 2*p2 + p3)).
 * Since we are going to use a power of 2 for the number of intervals,
 * we can avoid the square root by letting
 *	N = 1 + 2^(ceiling(log2(3/4 * D / flatness) / 2)).
 * (Reference: DEC Paris Research Laboratory report #1, May 1989.)
 *
 * We treat two cases specially.  First, if the curve is very
 * short, we halve the flatness, to avoid turning short shallow curves
 * into short straight lines.  Second, if the curve forms part of a
 * character, or the flatness is less than half a pixel, we let
 *	N = 1 + 2 * max(abs(x3-x0), abs(y3-y0)).
 * This is probably too conservative, but it produces good results.
 */
private int
flatten_internal(gx_path *ppath, fixed x1, fixed y1, fixed x2, fixed y2,
  fixed x3, fixed y3, fixed fixed_flat)
{	const fixed
		x0 = ppath->position.x,
		y0 = ppath->position.y;
	fixed
		x03 = x0 - x3,
		y03 = y0 - y3;
	int k;
	if ( x03 < 0 ) x03 = -x03;
	if ( y03 < 0 ) y03 = -y03;
	if ( (x03 | y03) < int2fixed(16) )
		fixed_flat >>= 1;
	if ( fixed_flat < fixed_half )
	{	/* Use the conservative method. */
		fixed m = max(x03, y03);
		for ( k = 1; m > fixed_1; )
			k++, m >>= 1;
	}
	else
	{	const fixed
			x12 = x1 - x2,
			y12 = y1 - y2,
			dx0 = x0 - x1 - x12,
			dy0 = y0 - y1 - y12,
			dx1 = x12 - x2 + x3,
			dy1 = y12 - y2 + y3,
			adx0 = any_abs(dx0),
			ady0 = any_abs(dy0),
			adx1 = any_abs(dx1),
			ady1 = any_abs(dy1);
		fixed
			d = max(adx0, adx1) + max(ady0, ady1);
		fixed q;
		if_debug6('2', "[2]d01=%g,%g d12=%g,%g d23=%g,%g\n",
			  fixed2float(x1 - x0), fixed2float(y1 - y0),
			  fixed2float(-x12), fixed2float(-y12),
			  fixed2float(x3 - x2), fixed2float(y3 - y2));
		if_debug2('2', "     D=%f, flat=%f,",
			  fixed2float(d), fixed2float(fixed_flat));
		d -= d >> 2;			/* 3/4 * D */
		if ( d < (fixed)1 << (sizeof(fixed) * 8 - _fixed_shift - 1) )
			q = (d << _fixed_shift) / fixed_flat;
		else
			q = float2fixed((float)d / fixed_flat);
		/* Now we want to set k = ceiling(log2(q) / 2). */
		for ( k = 0; q > fixed_1; )
			k++, q >>= 2;
		if_debug1('2', " k=%d\n", k);
	}
	return flatten_sample(ppath, k, x1, y1, x2, y2, x3, y3);
}

/* Maximum number of points for sampling if we want accurate rasterizing. */
/* 2^(k_sample_max*3)-1 must fit into a uint with a bit to spare. */
#define k_sample_max ((size_of(int) * 8 - 1) / 3)

/* Flatten a segment of the path by repeated sampling. */
/* 2^k is the number of lines to produce (i.e., the number of points - 1, */
/* including the endpoints); we require k >= 1. */
/* If k or any of the coefficient values are too large, */
/* use recursive subdivision to whittle them down. */
private int
flatten_sample(gx_path *ppath, int k,
  fixed x1, fixed y1, fixed x2, fixed y2, fixed x3, fixed y3)
{	fixed x0, y0;
	fixed cx, bx, ax, cy, by, ay;
	fixed ptx, pty;
	fixed x, y;
	/*
	 * If all the coefficients lie between min_fast and max_fast,
	 * we can do everything in fixed point.  In this case we compute
	 * successive values by finite differences, using the formulas:
		x(t) =
		  a*t^3 + b*t^2 + c*t + d =>
		dx(t) = x(t+e)-x(t) =
		  a*(3*t^2*e + 3*t*e^2 + e^3) + b*(2*t*e + e^2) + c*e =
		  (3*a*e)*t^2 + (3*a*e^2 + 2*b*e)*t + (a*e^3 + b*e^2 + c*e) =>
		d2x(t) = dx(t+e)-dx(t) =
		  (3*a*e)*(2*t*e + e^2) + (3*a*e^2 + 2*b*e)*e =
		  (6*a*e^2)*t + (6*a*e^3 + 2*b*e^2) =>
		d3x(t) = d2x(t+e)-d2x(t) =
		  6*a*e^3;
		x(0) = d, dx(0) = (a*e^3 + b*e^2 + c*e),
		  d2x(0) = 6*a*e^3 + 2*b*e^2;
	 * In these formulas, e = 1/2^k; of course, there are separate
	 * computations for the x and y values.
	 */
	uint i;
	/*
	 * We do exact rational arithmetic to avoid accumulating error.
	 * Each quantity is represented as I+R/M, where I is an "integer"
	 * and the "remainder" R lies in the range 0 <= R < M=2^(3*k).
	 * Note that R may temporarily exceed M; for this reason,
	 * we require that M have at least one free high-order bit.
	 * To reduce the number of variables, we don't actually compute M,
	 * only M-1 (rmask).
	 */
	uint rmask;			/* M-1 */
	fixed idx, idy, id2x, id2y, id3x, id3y;		/* I */
	uint rx, ry, rdx, rdy, rd2x, rd2y, rd3x, rd3y;	/* R */
	gs_fixed_point *ppt;
#define max_points 50			/* arbitrary */
	gs_fixed_point points[max_points + 1];

top:	x0 = ppath->position.x;
	y0 = ppath->position.y;
#ifdef DEBUG
if ( gs_debug_c('3') )
	dprintf4("[3]x0=%f y0=%f x1=%f y1=%f\n",
		 fixed2float(x0), fixed2float(y0),
		 fixed2float(x1), fixed2float(y1)),
	dprintf4("   x2=%f y2=%f x3=%f y3=%f\n",
		 fixed2float(x2), fixed2float(y2),
		 fixed2float(x3), fixed2float(y3));
#endif
	{	/* We spell out some multiplies by 3, */
		/* for the benefit of compilers that don't optimize this. */
		fixed x01, x12, y01, y12;
		x01 = x1 - x0;
		cx = (x01 << 1) + x01;		/* 3*(x1-x0) */
		x12 = x2 - x1;
		bx = (x12 << 1) + x12 - cx;	/* 3*(x2-2*x1+x0) */
		ax = x3 - bx - cx - x0;		/* x3-3*x2+3*x1-x0 */
		y01 = y1 - y0;
		cy = (y01 << 1) + y01;
		y12 = y2 - y1;
		by = (y12 << 1) + y12 - cy;
		ay = y3 - by - cy - y0;
	}

	if_debug6('3', "[3]ax=%f bx=%f cx=%f\n   ay=%f by=%f cy=%f\n",
		  fixed2float(ax), fixed2float(bx), fixed2float(cx),
		  fixed2float(ay), fixed2float(by), fixed2float(cy));
#define max_fast (max_fixed / 6)
#define min_fast (-max_fast)
#define in_range(v) (v < max_fast && v > min_fast)
	if ( k == 0 )
	{	/* The curve is very short, or anomalous in some way. */
		/* Just add a line and exit. */
		return gx_path_add_line(ppath, x3, y3);
	}
	if ( k <= k_sample_max &&
	     in_range(ax) && in_range(ay) &&
	     in_range(bx) && in_range(by) &&
	     in_range(cx) && in_range(cy)
	   )
	{	x = x0, y = y0;
		rx = ry = 0;
		ppt = points;
		/* Fast check for n == 3, a common special case */
		/* for small characters. */
		if ( k == 1 )
		{
#define poly2(a,b,c)\
  arith_rshift_1(arith_rshift_1(arith_rshift_1(a) + b) + c)
			x += poly2(ax, bx, cx);
			y += poly2(ay, by, cy);
#undef poly2
			if_debug2('3', "[3]dx=%f, dy=%f\n",
				  fixed2float(x - x0), fixed2float(y - y0));
			if_debug3('3', "[3]%s x=%g, y=%g\n",
				  (((x ^ x0) | (y ^ y0)) & float2fixed(-0.5) ?
				   "add" : "skip"),
				  fixed2float(x), fixed2float(y));
			if ( ((x ^ x0) | (y ^ y0)) & float2fixed(-0.5) )
			  ppt->x = ptx = x,
			  ppt->y = pty = y,
			  ppt++;
			goto last;
		}
		else
		{	fixed bx2 = bx << 1, by2 = by << 1;
			fixed ax6 = ((ax << 1) + ax) << 1,
			      ay6 = ((ay << 1) + ay) << 1;
#define adjust_rem(r, q)\
  if ( r > rmask ) q ++, r &= rmask
			const int k2 = k << 1;
			const int k3 = k2 + k;
			rmask = (1 << k3) - 1;
			/* We can compute all the remainders as ints, */
			/* because we know they don't exceed M. */
			/* cx/y terms */
			idx = arith_rshift(cx, k),
			  idy = arith_rshift(cy, k);
			rdx = ((uint)cx << k2) & rmask,
			  rdy = ((uint)cy << k2) & rmask;
			/* bx/y terms */
			id2x = arith_rshift(bx2, k2),
			  id2y = arith_rshift(by2, k2);
			rd2x = ((uint)bx2 << k) & rmask,
			  rd2y = ((uint)by2 << k) & rmask;
			idx += arith_rshift_1(id2x),
			  idy += arith_rshift_1(id2y);
			rdx += ((uint)bx << k) & rmask,
			  rdy += ((uint)by << k) & rmask;
			adjust_rem(rdx, idx);
			adjust_rem(rdy, idy);
			/* ax/y terms */
			idx += arith_rshift(ax, k3),
			  idy += arith_rshift(ay, k3);
			rdx += (uint)ax & rmask,
			  rdy += (uint)ay & rmask;
			adjust_rem(rdx, idx);
			adjust_rem(rdy, idy);
			id2x += id3x = arith_rshift(ax6, k3),
			  id2y += id3y = arith_rshift(ay6, k3);
			rd2x += rd3x = (uint)ax6 & rmask,
			  rd2y += rd3y = (uint)ay6 & rmask;
			adjust_rem(rd2x, id2x);
			adjust_rem(rd2y, id2y);
#undef adjust_rem
		}
	}
	else
	{	/* Curve is too long.  Break into two pieces and recur. */
		/* Algorithm is from "The Beta2-split: A special case of */
		/* the Beta-spline Curve and Surface Representation," */
		/* B. A. Barsky and A. D. DeRose, IEEE, 1985, */
		/* courtesy of Crispin Goswell. */

		/* We have to define midpoint carefully to avoid overflow. */
		/* (If it overflows, something really pathological is going */
		/* on, but we could get infinite recursion that way....) */
#define midpoint(a,b)\
  (arith_rshift_1(a) + arith_rshift_1(b) + ((a) & (b) & 1))
		k--;
		{	fixed x0 = ppath->position.x, y0 = ppath->position.y;
			fixed x01 = midpoint(x0, x1), y01 = midpoint(y0, y1);
			fixed x12 = midpoint(x1, x2), y12 = midpoint(y1, y2);
			fixed x02 = midpoint(x01, x12), y02 = midpoint(y01, y12);
			int code;
			/* Update x/y1 and x/y2 now for the second half. */
			x2 = midpoint(x2, x3), y2 = midpoint(y2, y3);
			x1 = midpoint(x12, x2), y1 = midpoint(y12, y2);
			code = flatten_sample(ppath, k, x01, y01, x02, y02,
					midpoint(x02, x1), midpoint(y02, y1));
			if ( code < 0 ) return code;
		}
		goto top;
	}
	if_debug1('2', "[2]sampling k=%d\n", k);
	ptx = x0, pty = y0;
	for ( i = (1 << k) - 1; ; )
	{	int code;
#ifdef DEBUG
if ( gs_debug_c('3') )
		dprintf4("[3]dx=%f+%d, dy=%f+%d\n",
			 fixed2float(idx), rdx,
			 fixed2float(idy), rdy),
		dprintf4("   d2x=%f+%d, d2y=%f+%d\n",
			 fixed2float(id2x), rd2x,
			 fixed2float(id2y), rd2y),
		dprintf4("   d3x=%f+%d, d3y=%f+%d\n",
			 fixed2float(id3x), rd3x,
			 fixed2float(id3y), rd3y);
#endif
#define accum(i, r, di, dr)\
  if ( (r += dr) > rmask ) r &= rmask, i += di + 1;\
  else i += di
		accum(x, rx, idx, rdx);
		accum(y, ry, idy, rdy);
		if_debug3('3', "[3]%s x=%g, y=%g\n",
			  (((x ^ ptx) | (y ^ pty)) & float2fixed(-0.5) ?
			   "add" : "skip"),
			  fixed2float(x), fixed2float(y));
		/* Skip very short segments */
		if ( ((x ^ ptx) | (y ^ pty)) & float2fixed(-0.5) )
		{	if ( ppt == &points[max_points] )
			  {	if ( (code = gx_path_add_lines(ppath, points, max_points)) < 0 )
				  return code;
				ppt = points;
			  }
			ppt->x = ptx = x;
			ppt->y = pty = y;
			ppt++;
		}
		if ( --i == 0 )
			break;		/* don't bother with last accum */
		accum(idx, rdx, id2x, rd2x);
		accum(id2x, rd2x, id3x, rd3x);
		accum(idy, rdy, id2y, rd2y);
		accum(id2y, rd2y, id3y, rd3y);
#undef accum
	}
last:	if_debug2('3', "[3]last x=%g, y=%g\n",
		  fixed2float(x3), fixed2float(y3));
	ppt->x = x3, ppt->y = y3;
	return gx_path_add_lines(ppath, points, (int)(ppt + 1 - points));
}

/*
 *	The rest of this file is an analysis that will eventually
 *	allow us to rasterize curves on the fly, by finding points
 *	where Y reaches a local maximum or minimum, which allows us to
 *	divide the curve into locally Y-monotonic sections.
 */

/*
	Let y(t) = a*t^3 + b*t^2 + c*t + d, 0 <= t <= 1.
	Then dy(t) = 3*a*t^2 + 2*b*t + c.
	y(t) has a local minimum or maximum (or inflection point)
	precisely where dy(t) = 0.  Now the roots of dy(t) are
		( -2*b +/- sqrt(4*b^2 - 12*a*c) ) / 6*a
	   =	( -b +/- sqrt(b*2 - 3*a*c) ) / 3*a
	(Note that real roots exist iff b^2 >= 3*a*c.)
	We want to know if these lie in the range (0..1).
	(We don't care about the endpoints.)  Call such a root
	a "valid zero."  Since computing the roots is expensive, we would
	like to have a cheap a priori test as to whether they exist.
	We proceed as follows:
		If sign(3*a + 2*b + c) ~= sign(c), a valid zero exists,
		  since dy(0) and dy(1) have opposite signs and hence
		  dy(t) must be zero somewhere in the interval [0..1].
		If sign(a) = sign(b), no valid zero exists,
		  since dy is monotonic on [0..1] and has the same sign
		  at both endpoints.
	Otherwise, dy(t) may be non-monotonic on [0..1]; it has valid zeros
	  iff there is an extremum in this interval and the extremum
	  is of the opposite sign from c.
	To find this out, we look for the local extremum of dy(t) by observing
		d2y(t) = 6*a*t + 2*b
	which has a zero only at
		t1 = -b / 3*a
	Now if t1 <= 0 or t1 >= 1, no valid zero exists.  Otherwise,
	we compute
		dy(t1) = c - (b^2 / 3*a)
	Then a valid zero exists (at t1) iff sign(dy(t1)) ~= sign(c).
 */

/* Expand a dashed path into explicit segments. */
/* The path contains no curves. */
private int subpath_expand_dashes(P3(const subpath *, gx_path *, gs_state *));
int
gx_path_expand_dashes(const gx_path *ppath_old, gx_path *ppath, gs_state *pgs)
{	const subpath *psub;
	if ( gs_currentdash_length(pgs) == 0 )
	  return gx_path_copy(ppath_old, ppath, true);
	gx_path_init(ppath, ppath_old->memory);
	for ( psub = ppath_old->first_subpath; psub != 0;
	      psub = (const subpath *)psub->last->next
	    )
	  {	int code = subpath_expand_dashes(psub, ppath, pgs);
		if ( code < 0 )
		  {	gx_path_release(ppath);
			return code;
		  }
	  }
	return 0;
}
private int
subpath_expand_dashes(const subpath *psub, gx_path *ppath, gs_state *pgs)
{	const gx_dash_params *dash = &gs_currentlineparams(pgs)->dash;
	const float *pattern = dash->pattern;
	int count, ink_on, index;
	float dist_left;
	fixed x0 = psub->pt.x, y0 = psub->pt.y;
	fixed x, y;
	const segment *pseg;
	int wrap = (dash->init_ink_on && psub->is_closed ? -1 : 0);
	int drawing = wrap;
	int code;
	if ( (code = gx_path_add_point(ppath, x0, y0)) < 0 )
		return code;
	/* To do the right thing at the beginning of a closed path, */
	/* we have to skip any initial line, and then redo it at */
	/* the end of the path.  Drawing = -1 while skipping, */
	/* 0 while drawing normally, and 1 on the second round. */
top:	count = dash->pattern_size;
	ink_on = dash->init_ink_on;
	index = dash->init_index;
	dist_left = dash->init_dist_left;
	x = x0, y = y0;
	pseg = (const segment *)psub;
	while ( (pseg = pseg->next) != 0 && pseg->type != s_start )
	   {	fixed sx = pseg->pt.x, sy = pseg->pt.y;
		fixed udx = sx - x, udy = sy - y;
		float length, dx, dy;
		float dist;
		if ( !(udx | udy) )	/* degenerate */
			dx = 0, dy = 0, length = 0;
		else
		   {	gs_point d;
			dx = udx, dy = udy;	/* scaled as fixed */
			gs_idtransform(pgs, dx, dy, &d);
			length = hypot(d.x, d.y) * (1 / (float)int2fixed(1));
		   }
		dist = length;
		while ( dist > dist_left )
		   {	/* We are using up the dash element */
			float fraction = dist_left / length;
			fixed nx = x + (fixed)(dx * fraction);
			fixed ny = y + (fixed)(dy * fraction);
			if ( ink_on )
			   {	if ( drawing >= 0 )
				  code = gx_path_add_line(ppath, nx, ny);
			   }
			else
			   {	if ( drawing > 0 ) return 0;	/* done */
				code = gx_path_add_point(ppath, nx, ny);
				drawing = 0;
			   }
			if ( code < 0 ) return code;
			dist -= dist_left;
			ink_on = !ink_on;
			if ( ++index == count ) index = 0;
			dist_left = pattern[index];
			x = nx, y = ny;
		   }
		dist_left -= dist;
		/* Handle the last dash of a segment. */
		if ( ink_on )
		   {	if ( drawing >= 0 )
			  code =
			    (pseg->type == s_line_close && drawing > 0 ?
			     gx_path_close_subpath(ppath) :
			     gx_path_add_line(ppath, sx, sy));
		   }
		else
		   {	if ( drawing > 0 ) return 0;	/* done */
			code = gx_path_add_point(ppath, sx, sy);
			drawing = 0;
		   }
		if ( code < 0 ) return code;
		x = sx, y = sy;
	   }
	/* Check for wraparound. */
	if ( wrap && drawing <= 0 )
	   {	/* We skipped some initial lines. */
		/* Go back and do them now. */
		drawing = 1;
		goto top;
	   }
	return 0;
}