1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
|
/* Copyright (C) 1989, 1995 Aladdin Enterprises. All rights reserved.
This file is part of GNU Ghostscript.
GNU Ghostscript is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to
anyone for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing. Refer
to the GNU Ghostscript General Public License for full details.
*/
/* gxstroke.c */
/* Path stroking procedures for Ghostscript library */
#include "math_.h"
#include "gx.h"
#include "gpcheck.h"
#include "gserrors.h"
#include "gxfixed.h"
#include "gxarith.h"
#include "gxmatrix.h"
#include "gscoord.h"
#include "gzstate.h"
#include "gzline.h"
#include "gzpath.h"
#include "gxpaint.h"
#include "gxdraw.h" /* gx_draw_line_fixed prototype */
/*
* We don't really know whether it's a good idea to take fill adjustment
* into account for stroking. Disregarding it means that strokes
* come out thinner than fills; observing it produces heavy-looking
* strokes at low resolutions. But in any case, we must disregard it
* when stroking zero-width lines.
*/
#define USE_FILL_ADJUSTMENT
#ifdef USE_FILL_ADJUSTMENT
# define stroke_adjustment(thin) (thin ? fixed_0 : pgs->fill_adjust)
#else
# define stroke_adjustment(thin) fixed_0
#endif
/*
* Structure for a partial line (passed to the drawing routine).
* Two of these are required to do joins right.
* Each endpoint includes the two ends of the cap as well,
* and the deltas for square and round cap computation.
*
* The two base values for computing the caps of a partial line are the
* width and the end cap delta. The width value is one-half the line
* width (suitably transformed) at 90 degrees counter-clockwise
* (in device space, but with "90 degrees" interpreted in *user*
* coordinates) at the end (as opposed to the origin) of the line.
* The cdelta value is one-half the transformed line width in the same
* direction as the line. From these, we compute two other values at each
* end of the line: co and ce, which are the ends of the cap.
* Note that the cdelta values at o are the negatives of the values at e,
* as are the offsets from p to co and ce.
*
* Initially, only o.p, e.p, e.cdelta, width, and thin are set.
* compute_caps fills in the rest.
*/
typedef gs_fixed_point _ss *p_ptr;
typedef struct endpoint_s {
gs_fixed_point p; /* the end of the line */
gs_fixed_point co, ce; /* ends of the cap, p +/- width */
gs_fixed_point cdelta; /* +/- cap length */
} endpoint;
typedef endpoint _ss *ep_ptr;
typedef struct partial_line_s {
endpoint o; /* starting coordinate */
endpoint e; /* ending coordinate */
gs_fixed_point width; /* one-half line width, see above */
bool thin; /* true if minimum-width line */
} partial_line;
typedef partial_line _ss *pl_ptr;
/* Assign a point. Some compilers would do this with very slow code */
/* if we simply implemented it as an assignment. */
#define assign_point(pp, p)\
((pp)->x = (p).x, (pp)->y = (p).y)
/* Procedures that stroke a partial_line (the first pl_ptr argument). */
/* If both partial_lines are non-null, the procedure creates */
/* an appropriate join; otherwise, the procedure creates an */
/* end cap. If the first int is 0, the procedure also starts with */
/* an appropriate cap. */
private int near stroke_add(P5(gx_path *, int, pl_ptr, pl_ptr, gs_state *));
private int near stroke_fill(P5(gx_path *, int, pl_ptr, pl_ptr, gs_state *));
/* Other forward declarations */
private int near stroke(P4(const gx_path *, gx_path *,
int near (*)(P5(gx_path *, int, pl_ptr, pl_ptr, gs_state *)),
gs_state *));
private void near adjust_stroke(P3(pl_ptr, gs_state *, bool));
private void near compute_caps(P1(pl_ptr));
private int near add_capped(P4(gx_path *, gs_line_cap,
int (*)(P3(gx_path *, fixed, fixed)),
ep_ptr));
/* Stroke a path for drawing or saving */
int
gx_stroke_fill(const gx_path *ppath, gs_state *pgs)
{ return stroke(ppath, (gx_path *)0, stroke_fill, pgs);
}
int
gx_stroke_add(const gx_path *ppath, gx_path *to_path, gs_state *pgs)
{ int code = stroke(ppath, to_path, stroke_add, pgs);
/* I don't understand why this code used to be here: */
#if 0
if ( code < 0 ) return code;
if ( ppath->subpath_open <= 0 && ppath->position_valid )
code = gx_path_add_point(to_path, ppath->position.x,
ppath->position.y);
#endif
return code;
}
/* Fill a partial stroked path. */
/* Free variables: code, to_path, ppath, stroke_path_body, pgs, exit(label). */
#define fill_stroke_path()\
if(to_path==&stroke_path_body && !gx_path_is_void_inline(&stroke_path_body))\
{ code = gx_fill_path(to_path, pgs->dev_color, pgs, gx_rule_winding_number,\
stroke_adjustment(always_thin));\
gx_path_release(to_path);\
if ( code < 0 ) goto exit;\
gx_path_init(to_path, ppath->memory);\
}
/* Stroke a path. Call line_proc (stroke_add or stroke_fill) */
/* for each line segment. */
private int near
stroke(const gx_path *ppath, gx_path *to_path,
int near (*line_proc)(P5(gx_path *, int, pl_ptr, pl_ptr, gs_state *)),
gs_state *pgs)
{ int code = 0;
const gx_line_params *lp = pgs->line_params;
int dash_count = lp->dash.pattern_size;
gx_path fpath, dpath;
gx_path stroke_path_body;
const gx_path *spath;
float xx = pgs->ctm.xx, xy = pgs->ctm.xy;
float yx = pgs->ctm.yx, yy = pgs->ctm.yy;
bool skewed = !is_fzero2(xy, yx);
int uniform = (skewed ? 0 : xx == yy ? 1 : xx == -yy ? -1 : 0);
/*
* We are dealing with a reflected coordinate system
* if transform(1,0) is counter-clockwise from transform(0,1).
* See the note in stroke_add for the algorithm.
*/
bool reflected =
(uniform ? uniform < 0 :
skewed ? xy * yx > xx * yy :
(xx < 0) != (yy < 0));
float line_width = lp->width; /* this is *half* the line width! */
bool always_thin;
double line_width_and_scale, line_width_scale_xx;
const segment *pseg;
#ifdef DEBUG
if ( gs_debug_c('o') )
{ int count = lp->dash.pattern_size;
int i;
dprintf3("[o]half_width=%f, cap=%d, join=%d,\n",
lp->width, (int)lp->cap, (int)lp->join);
dprintf2(" miter_limit=%f, miter_check=%f,\n",
lp->miter_limit, lp->miter_check);
dprintf1(" dash pattern=%d", count);
for ( i = 0; i < count; i++ )
dprintf1(",%f", lp->dash.pattern[i]);
dprintf4(",\n offset=%f, init(ink_on=%d, index=%d, dist_left=%f)\n",
lp->dash.offset, lp->dash.init_ink_on, lp->dash.init_index,
lp->dash.init_dist_left);
}
#endif
if ( line_width < 0 )
line_width = -line_width;
if ( is_fzero(line_width) )
always_thin = true;
else if ( !skewed )
{ float xxa = xx, yya = yy;
if ( xxa < 0 ) xxa = -xxa;
if ( yya < 0 ) yya = -yya;
always_thin = (max(xxa, yya) * line_width < 0.5);
}
else
{ /* The check is more complicated, but it's worth it. */
float xsq = xx * xx + xy * xy;
float ysq = yx * yx + yy * yy;
float cross = xx * yx + xy * yy;
if ( cross < 0 ) cross = 0;
always_thin =
((max(xsq, ysq) + cross) * line_width * line_width < 0.5);
}
line_width_and_scale = line_width * (double)int2fixed(1);
if ( !always_thin && uniform )
{ /* Precompute a value we'll need later. */
line_width_scale_xx = line_width_and_scale * xx;
if ( line_width_scale_xx < 0 )
line_width_scale_xx = -line_width_scale_xx;
}
if_debug5('o', "[o]ctm=(%g,%g,%g,%g) thin=%d\n",
xx, xy, yx, yy, always_thin);
/* Start by flattening the path. We should do this on-the-fly.... */
if ( !ppath->curve_count ) /* don't need to flatten */
{ if ( !ppath->first_subpath )
return 0;
spath = ppath;
}
else
{ if ( (code = gx_path_flatten(ppath, &fpath, pgs->flatness,
pgs->in_cachedevice > 1)) < 0
)
return code;
spath = &fpath;
}
if ( dash_count )
{ code = gx_path_expand_dashes(spath, &dpath, pgs);
if ( code < 0 )
goto exf;
spath = &dpath;
}
if ( to_path == 0 )
{ /* We might try to defer this if it's expensive.... */
to_path = &stroke_path_body;
gx_path_init(to_path, ppath->memory);
}
for ( pseg = (const segment *)spath->first_subpath; pseg != 0; )
{ int first = 0;
int index = 0;
fixed x = pseg->pt.x;
fixed y = pseg->pt.y;
bool is_closed = ((const subpath *)pseg)->is_closed;
partial_line pl, pl_prev, pl_first;
while ( (pseg = pseg->next) != 0 && pseg->type != s_start )
{ /* Compute the width parameters in device space. */
/* We work with unscaled values, for speed. */
fixed sx = pseg->pt.x, udx = sx - x;
fixed sy = pseg->pt.y, udy = sy - y;
pl.o.p.x = x, pl.o.p.y = y;
d: pl.e.p.x = sx, pl.e.p.y = sy;
if ( !(udx | udy) ) /* degenerate */
{ /*
* If this is the first segment of the subpath,
* check the entire subpath for degeneracy.
* Otherwise, ignore the degenerate segment.
*/
if ( index != 0 )
continue;
/* Check for a degenerate subpath. */
while ( (pseg = pseg->next) != 0 &&
pseg->type != s_start
)
{ sx = pseg->pt.x, udx = sx - x;
sy = pseg->pt.y, udy = sy - y;
if ( (udx | udy) )
goto d;
}
/*
* The entire subpath is degenerate, and it includes
* more than one point. If we are using round caps,
* draw the cap, otherwise do nothing.
*/
if ( lp->cap == gs_cap_round )
{ /*
* Set up cdelta; don't bother with efficiency.
* This is the same computation as for the slow case
* below, except that we arbitrarily choose the
* direction so that dpt.x = fixed_1, dpt.y = 0.
*/
double dptx = line_width_and_scale;
pl.e.cdelta.x = (fixed)(dptx * xx);
pl.e.cdelta.y = (fixed)(dptx * xy);
if ( !reflected )
dptx = -dptx;
pl.width.x = -(fixed)(dptx * yx);
pl.width.y = -(fixed)(dptx * yy);
pl.thin = false;
compute_caps(&pl);
/* To produce a complete dot, we need two */
/* round caps. */
code = add_capped(to_path, gs_cap_round,
gx_path_add_point, &pl.e);
if ( code < 0 )
return code;
code = add_capped(to_path, gs_cap_round,
gx_path_add_point, &pl.o);
if ( code < 0 )
return code;
fill_stroke_path();
}
break;
}
if ( !always_thin )
{ if ( uniform != 0 )
{ /* We can save a lot of work in this case. */
float dpx = udx, dpy = udy;
float wl = line_width_scale_xx /
hypot(dpx, dpy);
pl.e.cdelta.x = (fixed)(dpx * wl);
pl.e.cdelta.y = (fixed)(dpy * wl);
pl.width.x = -pl.e.cdelta.y;
pl.width.y = pl.e.cdelta.x;
pl.thin = false; /* if not always_thin, */
/* then never thin. */
}
else
{ gs_point dpt; /* unscaled */
float wl;
gs_idtransform(pgs, (float)udx, (float)udy,
&dpt);
wl = line_width_and_scale /
hypot(dpt.x, dpt.y);
/* Construct the width vector in */
/* user space, still unscaled. */
dpt.x *= wl;
dpt.y *= wl;
/*
* We now compute both perpendicular
* and (optionally) parallel half-widths,
* as deltas in device space. We use
* a fixed-point, unscaled version of
* gs_dtransform. The second computation
* folds in a 90-degree rotation (in user
* space, before transforming) in the
* direction that corresponds to counter-
* clockwise in device space.
*/
pl.e.cdelta.x = (fixed)(dpt.x * xx);
pl.e.cdelta.y = (fixed)(dpt.y * yy);
if ( skewed )
pl.e.cdelta.x += (fixed)(dpt.y * yx),
pl.e.cdelta.y += (fixed)(dpt.x * xy);
if ( !reflected )
dpt.x = -dpt.x, dpt.y = -dpt.y;
pl.width.x = (fixed)(dpt.y * xx),
pl.width.y = -(fixed)(dpt.x * yy);
if ( skewed )
pl.width.x -= (fixed)(dpt.x * yx),
pl.width.y += (fixed)(dpt.y * xy);
pl.thin =
any_abs(pl.width.x) + any_abs(pl.width.y) <
float2fixed(0.75);
}
if ( !pl.thin )
{ adjust_stroke(&pl, pgs, false);
compute_caps(&pl);
}
}
else /* always_thin */
pl.e.cdelta.x = pl.e.cdelta.y = 0,
pl.width.x = pl.width.y = 0,
pl.thin = true;
if ( first++ == 0 ) pl_first = pl;
if ( index++ )
{ code = (*line_proc)(to_path,
(is_closed ? 1 : index - 2),
&pl_prev, &pl, pgs);
if ( code < 0 )
goto exit;
fill_stroke_path();
}
pl_prev = pl;
x = sx, y = sy;
}
if ( index )
{ /* If closed, join back to start, else cap. */
/* For some reason, the Borland compiler requires the cast */
/* in the following line. */
pl_ptr lptr = (is_closed ? (pl_ptr)&pl_first : (pl_ptr)0);
code = (*line_proc)(to_path, index - 1, &pl_prev, lptr, pgs);
if ( code < 0 )
goto exit;
fill_stroke_path();
}
}
exit: if ( to_path == &stroke_path_body )
gx_path_release(to_path); /* (only needed if error) */
if ( dash_count )
gx_path_release(&dpath);
exf: if ( ppath->curve_count )
gx_path_release(&fpath);
return code;
}
/* ------ Internal routines ------ */
/* Adjust the endpoints and width of a stroke segment */
/* to achieve more uniform rendering. */
/* Only o.p, e.p, e.cdelta, and width have been set. */
private void near
adjust_stroke(pl_ptr plp, gs_state *pgs, bool thin)
{ fixed _ss *pw;
fixed _ss *pov;
fixed _ss *pev;
fixed w, w2;
fixed adj2;
if ( !pgs->stroke_adjust && plp->width.x != 0 && plp->width.y != 0 )
return; /* don't adjust */
if ( any_abs(plp->width.x) < any_abs(plp->width.y) )
{ /* More horizontal stroke */
pw = &plp->width.y, pov = &plp->o.p.y, pev = &plp->e.p.y;
}
else
{ /* More vertical stroke */
pw = &plp->width.x, pov = &plp->o.p.x, pev = &plp->e.p.x;
}
/* Round the larger component of the width up or down, */
/* whichever way produces a result closer to the correct width. */
/* Note that just rounding the larger component */
/* may not produce the correct result. */
adj2 = stroke_adjustment(thin) << 1;
w = *pw;
w2 = fixed_rounded(w << 1); /* full line width */
if ( w2 == 0 && *pw != 0 )
{ /* Make sure thin lines don't disappear. */
w2 = (*pw < 0 ? -fixed_1 + adj2 : fixed_1 - adj2);
*pw = arith_rshift_1(w2);
}
/* Only adjust the endpoints if the line is horizontal or vertical. */
if ( *pov == *pev )
{ /* We're going to round the endpoint coordinates, so */
/* take the fill adjustment into account now. */
if ( w >= 0 ) w2 += adj2;
else w2 -= adj2;
if ( w2 & fixed_1 ) /* odd width, move to half-pixel */
{ *pov = *pev = fixed_floor(*pov) + fixed_half;
}
else /* even width, move to pixel */
{ *pov = *pev = fixed_rounded(*pov);
}
}
}
/* Compute the intersection of two lines. This is a messy algorithm */
/* that somehow ought to be useful in more places than just here.... */
/* If the lines are (nearly) parallel, return -1 without setting *pi; */
/* otherwise, return 0 if the intersection is beyond *pp1 and *pp2 in */
/* the direction determined by *pd1 and *pd2, and 1 otherwise. */
private int
line_intersect(
p_ptr pp1, /* point on 1st line */
p_ptr pd1, /* slope of 1st line (dx,dy) */
p_ptr pp2, /* point on 2nd line */
p_ptr pd2, /* slope of 2nd line */
p_ptr pi) /* return intersection here */
{ /* We don't have to do any scaling, the factors all work out right. */
float u1 = pd1->x, v1 = pd1->y;
float u2 = pd2->x, v2 = pd2->y;
double denom = u1 * v2 - u2 * v1;
float xdiff = pp2->x - pp1->x;
float ydiff = pp2->y - pp1->y;
double f1;
double max_result = any_abs(denom) * (double)max_fixed;
#ifdef DEBUG
if ( gs_debug_c('O') )
{ dprintf4("[o]Intersect %f,%f(%f/%f)",
fixed2float(pp1->x), fixed2float(pp1->y),
fixed2float(pd1->x), fixed2float(pd1->y));
dprintf4(" & %f,%f(%f/%f),\n",
fixed2float(pp2->x), fixed2float(pp2->y),
fixed2float(pd2->x), fixed2float(pd2->y));
dprintf3("\txdiff=%f ydiff=%f denom=%f ->\n",
xdiff, ydiff, denom);
}
#endif
/* Check for degenerate result. */
if ( any_abs(xdiff) >= max_result || any_abs(ydiff) >= max_result )
{ /* The lines are nearly parallel, */
/* or one of them has zero length. Punt. */
if_debug0('O', "\tdegenerate!\n");
return -1;
}
f1 = (v2 * xdiff - u2 * ydiff) / denom;
pi->x = pp1->x + (fixed)(f1 * u1);
pi->y = pp1->y + (fixed)(f1 * v1);
if_debug2('O', "\t%f,%f\n",
fixed2float(pi->x), fixed2float(pi->y));
return (f1 >= 0 && (v1 * xdiff >= u1 * ydiff ? denom >= 0 : denom < 0) ? 0 : 1);
}
#define lix plp->o.p.x
#define liy plp->o.p.y
#define litox plp->e.p.x
#define litoy plp->e.p.y
#define trsign(v, c) ((v) >= 0 ? (c) : -(c))
/* Set up the width and delta parameters for a thin line. */
/* We only approximate the width and height. */
private void near
set_thin_widths(register pl_ptr plp)
{ fixed dx = litox - lix, dy = litoy - liy;
if ( any_abs(dx) > any_abs(dy) )
{ plp->width.x = plp->e.cdelta.y = 0;
plp->width.y = plp->e.cdelta.x = trsign(dx, fixed_half);
}
else
{ plp->width.y = plp->e.cdelta.x = 0;
plp->width.x = -(plp->e.cdelta.y = trsign(dy, fixed_half));
}
}
/* Draw a line on the device. */
private int near
stroke_fill(gx_path *ppath, int first, register pl_ptr plp, pl_ptr nplp,
gs_state *pgs)
{ if ( plp->thin )
{ /* Minimum-width line, don't have to be careful. */
/* We do have to check for the entire line being */
/* within the clipping rectangle, allowing for some */
/* slop at the ends. */
fixed dx = litox - lix, dy = litoy - liy;
#define slop int2fixed(2)
fixed xslop = trsign(dx, slop);
fixed yslop = trsign(dy, slop);
if ( gx_cpath_includes_rectangle(pgs->clip_path,
lix - xslop, liy - yslop,
litox + xslop, litoy + yslop) )
return gx_draw_line_fixed(lix, liy, litox, litoy,
pgs->dev_color, pgs);
#undef slop
#undef trsign
/* We didn't set up the endpoint parameters before, */
/* because the line was thin. stroke_add will do this. */
}
/* General case: construct a path for the fill algorithm. */
return stroke_add(ppath, first, plp, nplp, pgs);
}
#undef lix
#undef liy
#undef litox
#undef litoy
/* Add a segment to the path. This handles all the complex cases. */
private int near add_capped(P4(gx_path *, gs_line_cap, int (*)(P3(gx_path *, fixed, fixed)), ep_ptr));
private int near
stroke_add(gx_path *ppath, int first, register pl_ptr plp, pl_ptr nplp,
gs_state *pgs)
{ int code;
if ( plp->thin )
{ /* We didn't set up the endpoint parameters before, */
/* because the line was thin. Do it now. */
set_thin_widths(plp);
adjust_stroke(plp, pgs, true);
compute_caps(plp);
}
if ( (code = add_capped(ppath, (first == 0 ? pgs->line_params->cap : gs_cap_butt), gx_path_add_point, &plp->o)) < 0 )
return code;
if ( nplp == 0 )
{ code = add_capped(ppath, pgs->line_params->cap, gx_path_add_line, &plp->e);
}
else if ( pgs->line_params->join == gs_join_round )
{ code = add_capped(ppath, gs_cap_round, gx_path_add_line, &plp->e);
}
else if ( nplp->thin ) /* no join */
{ code = add_capped(ppath, gs_cap_butt, gx_path_add_line, &plp->e);
}
else /* join_bevel or join_miter */
{ gs_fixed_point join_points[4];
#define jp1 join_points[0]
#define np1 join_points[1]
#define np2 join_points[2]
#define jp2 join_points[3]
/*
* Set np to whichever of nplp->o.co or .ce is outside
* the current line. We observe that the point (x2,y2)
* is counter-clockwise from (x1,y1), relative to the origin,
* iff
* (arctan(y2/x2) - arctan(y1/x1)) mod 2*pi < pi,
* taking the signs of xi and yi into account to determine
* the quadrants of the results. It turns out that
* even though arctan is monotonic only in the 4th/1st
* quadrants and the 2nd/3rd quadrants, case analysis on
* the signs of xi and yi demonstrates that this test
* is equivalent to the much less expensive test
* x1 * y2 > x2 * y1
* in all cases.
*
* In the present instance, x1,y1 are plp->width,
* x2,y2 are nplp->width, and the origin is
* their common point (plp->e.p, nplp->o.p).
*/
/* We make the test using double arithmetic only because */
/* the !@#&^*% C language doesn't give us access to */
/* the double-width-result multiplication operation */
/* that almost all CPUs provide! */
bool ccw =
(double)(plp->width.x) * /* x1 */
(nplp->width.y) > /* y2 */
(double)(nplp->width.x) * /* x2 */
(plp->width.y);
p_ptr outp, np;
/* Initialize for a bevel join. */
assign_point(&jp1, plp->e.co);
assign_point(&jp2, plp->e.ce);
/* Because of stroke adjustment, it is possible that */
/* plp->e.p != nplp->o.p. For that reason, we must use */
/* nplp->o.p as np1 or np2. */
if ( !ccw )
{ outp = &jp2;
assign_point(&np2, nplp->o.co);
assign_point(&np1, nplp->o.p);
np = &np2;
}
else
{ outp = &jp1;
assign_point(&np1, nplp->o.ce);
assign_point(&np2, nplp->o.p);
np = &np1;
}
if_debug1('O', "[o]use %s\n", (ccw ? "co (ccw)" : "ce (cw)"));
/* Don't bother with the miter check if the two */
/* points to be joined are very close together, */
/* namely, in the same square half-pixel. */
if ( pgs->line_params->join == gs_join_miter &&
!(fixed2long(outp->x << 1) == fixed2long(np->x << 1) &&
fixed2long(outp->y << 1) == fixed2long(np->y << 1))
)
{ /*
* Check whether a miter join is appropriate.
* Let a, b be the angles of the two lines.
* We check tan(a-b) against the miter_check
* by using the following formula:
* If tan(a)=u1/v1 and tan(b)=u2/v2, then
* tan(a-b) = (u1*v2 - u2*v1) / (u1*u2 + v1*v2).
* We can do all the computations unscaled,
* because we're only concerned with ratios.
*/
float u1 = plp->e.cdelta.y, v1 = plp->e.cdelta.x;
float u2 = nplp->o.cdelta.y, v2 = nplp->o.cdelta.x;
double num = u1 * v2 - u2 * v1;
double denom = u1 * u2 + v1 * v2;
float check = pgs->line_params->miter_check;
/*
* We will want either tan(a-b) or tan(b-a)
* depending on the orientations of the lines.
* Fortunately we know the relative orientations already.
*/
if ( !ccw ) /* have plp - nplp, want vice versa */
num = -num;
#ifdef DEBUG
if ( gs_debug_c('O') )
{ dprintf4("[o]Miter check: u1/v1=%f/%f, u2/v2=%f/%f,\n",
u1, v1, u2, v2);
dprintf3(" num=%f, denom=%f, check=%f\n",
num, denom, check);
}
#endif
/*
* If we define T = num / denom, then we want to use
* a miter join iff arctan(T) >= arctan(check).
* We know that both of these angles are in the 1st
* or 2nd quadrant, and since arctan is monotonic
* within each quadrant, we can do the comparisons
* on T and check directly, taking signs into account
* as follows:
* sign(T) sign(check) atan(T) >= atan(check)
* ------- ----------- ----------------------
* + + T >= check
* - + true
* + - false
* - - T >= check
*/
if ( denom < 0 )
num = -num, denom = -denom;
/* Now denom >= 0, so sign(num) = sign(T). */
if ( check > 0 ?
(num < 0 || num >= denom * check) :
(num < 0 && num >= denom * check)
)
{ /* OK to use a miter join. */
gs_fixed_point mpt;
if_debug0('O', " ... passes.\n");
/* Compute the intersection of */
/* the extended edge lines. */
if ( line_intersect(outp, &plp->e.cdelta, np,
&nplp->o.cdelta, &mpt) == 0
)
assign_point(outp, mpt);
}
}
if ( (code = gx_path_add_lines(ppath, join_points, 4)) < 0 )
return code;
}
if ( code < 0 || (code = gx_path_close_subpath(ppath)) < 0 )
return code;
return 0;
}
/* Routines for cap computations */
/* Compute the endpoints of the two caps of a segment. */
/* Only o.p, e.p, width, and cdelta have been set. */
private void near
compute_caps(register pl_ptr plp)
{ fixed wx2 = plp->width.x;
fixed wy2 = plp->width.y;
plp->o.co.x = plp->o.p.x + wx2, plp->o.co.y = plp->o.p.y + wy2;
plp->o.cdelta.x = -plp->e.cdelta.x,
plp->o.cdelta.y = -plp->e.cdelta.y;
plp->o.ce.x = plp->o.p.x - wx2, plp->o.ce.y = plp->o.p.y - wy2;
plp->e.co.x = plp->e.p.x - wx2, plp->e.co.y = plp->e.p.y - wy2;
plp->e.ce.x = plp->e.p.x + wx2, plp->e.ce.y = plp->e.p.y + wy2;
#ifdef DEBUG
if ( gs_debug_c('O') )
dprintf4("[o]Stroke o=(%f,%f) e=(%f,%f)\n",
fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
fixed2float(plp->e.p.x), fixed2float(plp->e.p.y)),
dprintf4("\twxy=(%f,%f) lxy=(%f,%f)\n",
fixed2float(wx2), fixed2float(wy2),
fixed2float(plp->e.cdelta.x), fixed2float(plp->e.cdelta.y));
#endif
}
/* Add a properly capped line endpoint to the path. */
/* The first point may require either moveto or lineto. */
private int near
add_capped(gx_path *ppath, gs_line_cap type,
int (*add_proc)(P3(gx_path *, fixed, fixed)), /* gx_path_add_point/line */
register ep_ptr endp)
{ int code;
#define px endp->p.x
#define py endp->p.y
#define xo endp->co.x
#define yo endp->co.y
#define xe endp->ce.x
#define ye endp->ce.y
#define cdx endp->cdelta.x
#define cdy endp->cdelta.y
#ifdef DEBUG
if ( gs_debug_c('O') )
dprintf4("[o]cap: p=(%g,%g), co=(%g,%g),\n",
fixed2float(px), fixed2float(py),
fixed2float(xo), fixed2float(yo)),
dprintf4("[o]\tce=(%g,%g), cd=(%g,%g)\n",
fixed2float(xe), fixed2float(ye),
fixed2float(cdx), fixed2float(cdy));
#endif
switch ( type )
{
case gs_cap_round:
{ fixed xm = px + cdx;
fixed ym = py + cdy;
if ( (code = (*add_proc)(ppath, xo, yo)) < 0 ||
(code = gx_path_add_arc(ppath, xo, yo, xm, ym,
xo + cdx, yo + cdy, quarter_arc_fraction)) < 0 ||
(code = gx_path_add_arc(ppath, xm, ym, xe, ye,
xe + cdx, ye + cdy, quarter_arc_fraction)) < 0
) return code;
}
break;
case gs_cap_square:
if ( (code = (*add_proc)(ppath, xo + cdx, yo + cdy)) < 0 ||
(code = gx_path_add_line(ppath, xe + cdx, ye + cdy)) < 0
) return code;
break;
case gs_cap_butt:
if ( (code = (*add_proc)(ppath, xo, yo)) < 0 ||
(code = gx_path_add_line(ppath, xe, ye)) < 0
) return code;
break;
default: /* can't happen */
return_error(gs_error_unregistered);
}
return code;
}
|