1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
/* Copyright (C) 1990, 1991, 1994 Aladdin Enterprises. All rights reserved.
This file is part of GNU Ghostscript.
GNU Ghostscript is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to
anyone for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing. Refer
to the GNU Ghostscript General Public License for full details.
*/
/* ibnum.c */
/* Level 2 encoded number reading utilities for Ghostscript */
#include "math_.h"
#include "memory_.h"
#include "ghost.h"
#include "errors.h"
#include "stream.h"
#include "ibnum.h"
/* Define the number of bytes for a given format of encoded number. */
const byte enc_num_bytes[] = { enc_num_bytes_values };
/* ------ Encoded number reading ------ */
/* Set up to read from an encoded number array/string. */
/* Return <0 for error, or a num_format. */
int
sread_num_array(stream *s, ref *op)
{ int num_format;
switch ( r_type(op) )
{
case t_string:
{ /* Check that this is a legitimate encoded number array. */
byte *bp = op->value.bytes;
short count;
int nshift;
if ( r_size(op) < 4 || bp[0] != bt_num_array_value ||
!num_is_valid(bp[1])
)
return_error(e_typecheck);
sread_string(s, bp + 4, r_size(op) - 4);
num_format = bp[1];
count = sdecodeshort(bp + 2, num_format);
nshift = ((bp[1] & 0x70) == 0x20 ? 1 : 2);
if ( count != (r_size(op) - 4) >> nshift )
return_error(e_typecheck);
} break;
case t_array:
sread_string(s, (byte *)op->value.refs, r_size(op) * sizeof(ref));
num_format = num_array;
break;
default:
return_error(e_typecheck);
}
return num_format;
}
/* Get the number of elements in an encoded number stream. */
uint
scount_num_stream(stream *s, int format)
{ long avlong;
savailable(s, &avlong);
return (uint)(avlong / encoded_number_bytes(format));
}
/* Read an encoded number from a stream according to the given num_format. */
/* Put the value in np->value.{intval,realval}. */
/* Return t_int if integer, t_real if real, t_null if end of stream, */
/* or an error if the format is invalid. */
/* Note that the stream is always reading a string or an array, */
/* and we pre-checked the size, so sgets cannot return an error. */
int
sget_encoded_number(stream *s, int format, ref *np)
{ byte nstr[sizeof(ref)]; /* worst case */
uint len;
sgets(s, nstr, encoded_number_bytes(format), &len);
if ( len == 0 )
return t_null;
else
return sdecode_number(nstr, format, np);
}
/* Internal routine to decode a number in a given format. */
/* Same returns as sget_encoded_number. */
static const double binary_scale[32] = {
#define expn2(n) (0.5 / (1L << (n-1)))
1.0, expn2(1), expn2(2), expn2(3),
expn2(4), expn2(5), expn2(6), expn2(7),
expn2(8), expn2(9), expn2(10), expn2(11),
expn2(12), expn2(13), expn2(14), expn2(15),
expn2(16), expn2(17), expn2(18), expn2(19),
expn2(20), expn2(21), expn2(22), expn2(23),
expn2(24), expn2(25), expn2(26), expn2(27),
expn2(28), expn2(29), expn2(30), expn2(31)
#undef expn2
};
int
sdecode_number(const byte *str, int format, ref *np)
{ switch ( format & 0x170 )
{
case num_int32: case num_int32 + 16:
if ( (format & 31) == 0 )
{ np->value.intval = sdecodelong(str, format);
return t_integer;
}
else
{ np->value.realval =
(double)sdecodelong(str, format) *
binary_scale[format & 31];
return t_real;
}
case num_int16:
if ( (format & 15) == 0 )
{ np->value.intval = sdecodeshort(str, format);
return t_integer;
}
else
{ np->value.realval =
sdecodeshort(str, format) *
binary_scale[format & 15];
return t_real;
}
case num_float:
np->value.realval = sdecodefloat(str, format);
return t_real;
case num_array:
memcpy(np, str, sizeof(ref));
switch ( r_type(np) )
{
case t_integer:
return t_integer;
case t_real:
return t_real;
default:
return_error(e_typecheck);
}
default:
return_error(e_syntaxerror); /* invalid num_format?? */
}
}
/* ------ Decode number ------ */
/* Decode encoded numbers from a string according to format. */
/* Decode a (16-bit, signed) short. */
short
sdecodeshort(register const byte *p, int format)
{ int a = p[0], b = p[1];
short v = (num_is_lsb(format) ? (b << 8) + a : (a << 8) + b);
#if arch_sizeof_short == 2
return v;
#else
/* Sign-extend if sizeof(short) > 2. */
return (v & 0x7fff) - (v & 0x8000);
#endif
}
/* Decode a (32-bit, signed) long. */
long
sdecodelong(register const byte *p, int format)
{ int a = p[0], b = p[1], c = p[2], d = p[3];
long v = (num_is_lsb(format) ?
((long)d << 24) + ((long)c << 16) + (b << 8) + a :
((long)a << 24) + ((long)b << 16) + (c << 8) + d);
#if arch_sizeof_long == 4
return v;
#else
/* Sign-extend if sizeof(long) > 4. */
return (v & 0x7fffffffL) - (v & 0x80000000L);
#endif
}
/* Decode a float. We don't handle non-IEEE native representations yet. */
float
sdecodefloat(register const byte *p, int format)
{ float fnum;
if ( format != num_float_native )
{ bits32 lnum = (bits32)sdecodelong(p, format);
/* We know IEEE floats take 32 bits. */
#if !arch_floats_are_IEEE
/* Convert IEEE float to native float. */
int sign_expt = lnum >> 32;
int expt = sign_expt & 0xff;
long mant = lnum & 0x7fffff;
if ( expt == 0 && mant == 0 )
fnum = 0;
else
{ mant += 0x800000;
fnum = (float)ldexp((float)mant, expt - 127 - 24);
}
if ( sign_expt >= 0x100 )
fnum = -fnum;
#else
fnum = *(float *)&lnum;
#endif
}
else
memcpy(&fnum, p, sizeof(float));
return fnum;
}
|