File: idict.c

package info (click to toggle)
gs 3.33-7
  • links: PTS
  • area: main
  • in suites: hamm
  • size: 7,436 kB
  • ctags: 15,511
  • sloc: ansic: 92,150; asm: 684; sh: 486; makefile: 91
file content (934 lines) | stat: -rw-r--r-- 29,235 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
/* Copyright (C) 1989, 1992, 1993, 1994, 1995 Aladdin Enterprises.  All rights reserved.
  
  This file is part of GNU Ghostscript.
  
  GNU Ghostscript is distributed in the hope that it will be useful, but
  WITHOUT ANY WARRANTY.  No author or distributor accepts responsibility to
  anyone for the consequences of using it or for whether it serves any
  particular purpose or works at all, unless he says so in writing.  Refer
  to the GNU Ghostscript General Public License for full details.
  
*/

/* idict.c */
/* Dictionaries for Ghostscript */
#include "string_.h"			/* for strlen */
#include "ghost.h"
#include "errors.h"
#include "ialloc.h"
#include "idebug.h"			/* for debug_print_name */
#include "iname.h"
#include "ipacked.h"
#include "isave.h"			/* for value cache in names */
#include "store.h"
#include "idict.h"			/* interface definition */
#include "dstack.h"			/* interface & some implementation */
#include "iutil.h"			/* for array_get and obj_eq */
#include "ivmspace.h"			/* for store check */

/*
 * A dictionary of capacity M is a structure of four elements (refs):
 *
 *	keys - a t_shortarray or t_array of M+1 elements, containing
 *	the keys.
 *
 *	values - a t_array of M+1 elements, containing the values.
 *
 *	count - a t_integer whose value tells how many entries are
 *	occupied (N).
 *
 *	maxlength - a t_integer whose value gives the client's view of
 *	the capacity (C).  C may be less than M (see below).
 *
 * C < M is possible because on large-memory systems, we round up M so that
 * M is a power of 2; this allows us to use masking rather than division
 * for computing the initial hash probe.  However, C is always the
 * maxlength specified by the client, so clients get a consistent story.
 *
 * As noted above, the keys may be either in packed or unpacked form.
 * The markers for unused and deleted entries are different in the two forms.
 * In the packed form:
 *	unused entries contain packed_key_empty;
 *	deleted entries contain packed_key_deleted.
 * In the unpacked form:
 *	unused entries contain a literal null;
 *	deleted entries contain an executable null.
 *
 * The first entry is always marked deleted, to reduce the cost of the
 * wrap-around check.
 *
 * Note that if the keys slot in the dictionary is new,
 * all the key slots are new (more recent than the last save).
 * We use this fact to avoid saving stores into packed keys
 * for newly created dictionaries.
 *
 * Note that name keys with indices above packed_max_value require using
 * the unpacked form.
 */
#define dict_is_packed(dct) r_has_type(&(dct)->keys, t_shortarray)
#define packed_key_empty (pt_tag(pt_integer) + 0)
#define packed_key_deleted (pt_tag(pt_integer) + 1)
#define packed_key_impossible pt_tag(pt_full_ref)	/* never matches */
#define packed_name_key(nidx)\
  ((nidx) <= packed_max_value ? pt_tag(pt_literal_name) + (nidx) :\
   packed_key_impossible)
/*
 * Using a special mark for deleted entries causes lookup time to degrade
 * as entries are inserted and deleted.  This is not a problem, because
 * entries are almost never deleted.
 */
#define d_maxlength(dct) ((uint)((dct)->maxlength.value.intval))
#define d_set_maxlength(dct,siz) ((dct)->maxlength.value.intval = (siz))
#define nslots(dct) r_size(&(dct)->values)
#define npairs(dct) (nslots(dct) - 1)
#define d_length(dct) ((uint)((dct)->count.value.intval))

/*
 * Define the size of the largest valid dictionary.
 * This is limited by the size field of the keys and values refs,
 * and by the enumeration interface, which requires the size to
 * fit in an int.  As it happens, max_array_size will always be
 * smaller than max_int.
 */
const uint dict_max_size = max_array_size - 1;

/* Define whether dictionaries expand automatically when full. */
bool dict_auto_expand = false;

/* Define whether dictionaries are packed by default. */
bool dict_default_pack = true;

/* Cached values from the top element of the dictionary stack. */
/* See dstack.h for details. */
int dsspace;				/* see dstack.h */
const ref_packed *dtop_keys;
uint dtop_npairs;
ref *dtop_values;

/* Forward references */
private int dict_create_contents(P3(uint size, const ref *pdref, bool pack));

/* Debugging statistics */
#ifdef DEBUG
long dn_lookups;		/* total lookups */
long dn_1probe;			/* successful lookups on only 1 probe */
long dn_2probe;			/* successful lookups on 2 probes */
/* Wrappers for dict_find and dict_find_name_by_index */
int real_dict_find(P3(const ref *pdref, const ref *key, ref **ppvalue));
int
dict_find(const ref *pdref, const ref *pkey, ref **ppvalue)
{	dict *pdict = pdref->value.pdict;
	int code = real_dict_find(pdref, pkey, ppvalue);
	dn_lookups++;
	if ( r_has_type(pkey, t_name) && dict_is_packed(pdict) )
	{	uint nidx = name_index(pkey);
		uint hash =
		  hash_mod(dict_name_index_hash(nidx), npairs(pdict)) + 1;
		if (  pdict->keys.value.packed[hash] ==
		        pt_tag(pt_literal_name) + nidx
		   )
		  dn_1probe++;
		else if (  pdict->keys.value.packed[hash - 1] ==
			     pt_tag(pt_literal_name) + nidx
			)
		  dn_2probe++;
	}
	/* Do the cheap flag test before the expensive remainder test. */
	if ( gs_debug_c('d') && !(dn_lookups % 1000) )
	  dprintf3("[d]lookups=%ld 1probe=%ld 2probe=%ld\n",
		   dn_lookups, dn_1probe, dn_2probe);
	return code;
}
#define dict_find real_dict_find
ref *real_dict_find_name_by_index(P1(uint nidx));
ref *
dict_find_name_by_index(uint nidx)
{	ref *pvalue = real_dict_find_name_by_index(nidx);
	dict *pdict = dsp->value.pdict;
	dn_lookups++;
	if ( dict_is_packed(pdict) )
	{	uint hash =
		  hash_mod(dict_name_index_hash(nidx), npairs(pdict)) + 1;
		if (  pdict->keys.value.packed[hash] ==
		        pt_tag(pt_literal_name) + nidx
		   )
		  dn_1probe++;
		else if (  pdict->keys.value.packed[hash - 1] ==
			     pt_tag(pt_literal_name) + nidx
			)
		  dn_2probe++;
	}
	/* Do the cheap flag test before the expensive remainder test. */
	if ( gs_debug_c('d') && !(dn_lookups % 1000) )
	  dprintf3("[d]lookups=%ld 1probe=%ld 2probe=%ld\n",
		   dn_lookups, dn_1probe, dn_2probe);
	return pvalue;
}
#define dict_find_name_by_index real_dict_find_name_by_index
#endif

/* Create a dictionary in the current VM space. */
int
dict_create(uint size, ref *pdref)
{	ref arr;
	int code = ialloc_ref_array(&arr, a_all, sizeof(dict) / sizeof(ref),
				    "dict_create");
	ref dref;
	if ( code < 0 )
	  return code;
	make_tav_new(&dref, t_dictionary, r_space(&arr) | a_all,
		     pdict, (dict *)arr.value.refs);
	code = dict_create_contents(size, &dref, dict_default_pack);
	if ( code < 0 )
	  return code;
	*pdref = dref;
	return 0;
}
/* Create unpacked keys for a dictionary. */
/* The keys are allocated in the same VM space as the dictionary. */
private int
dict_create_unpacked_keys(uint asize, const ref *pdref)
{	dict *pdict = pdref->value.pdict;
	uint space = ialloc_space(idmemory);
	int code;
	ref *kp;
	ref *zp;
	register uint i;
	ialloc_set_space(idmemory, r_space(pdref));
	code = ialloc_ref_array(&pdict->keys, a_all, asize, "dict_create(keys)");
	if ( code >= 0 )
	  { ref_mark_new(&pdict->keys);
	    for ( zp = kp = pdict->keys.value.refs, i = asize; i; zp++, i-- )
	      make_null_new(zp);
	    r_set_attrs(kp, a_executable);	/* wraparound entry */
	  }
	ialloc_set_space(idmemory, space);
	return code;
}
/* Create the contents (keys and values) of a dictionary. */
/* Allocate in the current VM space, which is assumed to be the same as */
/* the VM space where the dictionary is allocated. */
private int
dict_create_contents(uint size, const ref *pdref, bool pack)
{	dict *pdict = pdref->value.pdict;
	uint asize = (size == 0 ? 1 : size);
	int code;
	register uint i;
	ref *zp;
	/* If appropriate, round up the actual allocated size to the next */
	/* higher power of 2, so we can use & instead of %. */
	dict_round_size(asize);
	asize++;		/* allow room for wraparound entry */
	code = ialloc_ref_array(&pdict->values, a_all, asize, "dict_create(values)");
	if ( code < 0 )
	  return code;
	ref_mark_new(&pdict->values);
	for ( zp = pdict->values.value.refs, i = asize; i; zp++, i-- )
	  make_null_new(zp);
	if ( pack )
	   {	uint ksize = (asize + packed_per_ref - 1) / packed_per_ref;
		ref arr;
		ref_packed *pkp;
		ref_packed *pzp;
		code = ialloc_ref_array(&arr, a_all, ksize, "dict_create(packed keys)");
		if ( code < 0 ) return code;
		pkp = (ref_packed *)arr.value.refs;
		make_tasv_new(&pdict->keys, t_shortarray,
			      r_space(&arr) | a_all,
			      asize, packed, pkp);
		for ( pzp = pkp, i = 0; i < asize || i % packed_per_ref; pzp++, i++ )
		  *pzp = packed_key_empty;
		*pkp = packed_key_deleted;	/* wraparound entry */
	   }
	else				/* not packed */
	   {	int code = dict_create_unpacked_keys(asize, pdref);
		if ( code < 0 ) return code;
	   }
	make_int_new(&pdict->count, 0);
	make_int_new(&pdict->maxlength, size);
	return 0;
}

/*
 * Ensure that a dictionary uses the unpacked representation for keys.
 * We can't just use dict_resize, because the values slots mustn't move.
 */
int
dict_unpack(ref *pdref)
{	dict *pdict = pdref->value.pdict;
	if ( !dict_is_packed(pdict) )
	  return 0;			/* nothing to do */
	{	uint count = nslots(pdict);
		const ref_packed *okp = pdict->keys.value.packed;
		ref old_keys;
		int code;
		ref *nkp;
		old_keys = pdict->keys;
		ialloc_save_change(pdref, (ref_packed *)&pdict->keys,
				   "dict_unpack(keys)");
		code = dict_create_unpacked_keys(count, pdref);
		if ( code < 0 )
		  return code;
		for ( nkp = pdict->keys.value.refs; count--; okp++, nkp++ )
		  if ( r_packed_is_name(okp) )
		    packed_get(okp, nkp);
		ifree_ref_array(&old_keys, "dict_unpack(old keys)");
		dict_set_top();	/* just in case */
	}
	return 0;
}

/*
 * Define a macro for searching a packed dictionary.  Free variables:
 *	ref_packed kpack - holds the packed key.
 *	uint hash - holds the hash of the name.
 *	dict *pdict - points to the dictionary.
 *	uint size - holds npairs(pdict).
 * Note that the macro is *not* enclosed in {}, so that we can access
 * the values of kbot and kp after leaving the loop.
 *
 * We break the macro into two to avoid overflowing some preprocessors.
 */
/* packed_search_body also uses kp and kbot as free variables. */
#define packed_search_body(del,pre,post,miss)\
    { if_debug2('D', "[D]probe 0x%lx: 0x%x\n", (ulong)kp, *kp);\
      if ( *kp == kpack )\
       { pre (pdict->values.value.refs + (kp - kbot));\
	 post;\
       }\
      else if ( !r_packed_is_name(kp) )\
       { /* Empty, deleted, or wraparound. Figure out which. */\
	 if ( *kp == packed_key_empty ) miss;\
	 if ( kp == kbot ) break;	/* wrap */\
	 else { del; }\
       }\
    }
#define packed_search_1(del,pre,post,miss)\
   const ref_packed *kbot = pdict->keys.value.packed;\
   register const ref_packed *kp;\
   for ( kp = kbot + hash_mod(hash, size) + 1; ; kp-- )\
     packed_search_body(del,pre,post,miss)
#define packed_search_2(del,pre,post,miss)\
   for ( kp += size; ; kp-- )\
     packed_search_body(del,pre,post,miss)

/*
 * Look up a key in a dictionary.  Store a pointer to the value slot
 * where found, or to the (value) slot for inserting.
 * Return 1 if found, 0 if not and there is room for a new entry,
 * or e_dictfull if the dictionary is full and the key is missing.
 * The caller is responsible for ensuring key is not a null.
 */
int
dict_find(const ref *pdref, const ref *pkey,
  ref **ppvalue	/* result is stored here */)
{	dict *pdict = pdref->value.pdict;
	uint size = npairs(pdict);
	register int etype;
	uint nidx;
	ref_packed kpack;
	uint hash;
	int ktype;
	/* Compute hash.  The only types we bother with are strings, */
	/* names, and (unlikely, but worth checking for) integers. */
	switch ( r_type(pkey) )
	{
	case t_name:
		nidx = name_index(pkey);
nh:		hash = dict_name_index_hash(nidx);
		kpack = packed_name_key(nidx);
		ktype = t_name;
		break;
	case t_string:			/* convert to a name first */
	{	ref nref;
		int code = name_ref(pkey->value.bytes,
				    r_size(pkey), &nref, 1);
		if ( code < 0 ) return code;
		nidx = name_index(&nref);
	}	goto nh;
	case t_integer:
		hash = (uint)pkey->value.intval * 30503;
		kpack = packed_key_impossible;
		ktype = -1;
		nidx = 0;		/* only to pacify gcc */
		break;
	case t_null:			/* not allowed as a key */
		return_error(e_typecheck);
	default:
		hash = r_btype(pkey) * 99;	/* yech */
		kpack = packed_key_impossible;
		ktype = -1;
		nidx = 0;		/* only to pacify gcc */
	}
	/* Search the dictionary */
	if ( dict_is_packed(pdict) )
	{	const ref_packed *pslot = 0;
		packed_search_1(if ( pslot == 0 ) pslot = kp,
				*ppvalue =, return 1, goto miss);
		packed_search_2(if ( pslot == 0 ) pslot = kp,
				*ppvalue =, return 1, goto miss);
		/* Double wraparound, dict is full. */
		if ( pslot == 0 )		/* no empty slots */
		  return_error(e_dictfull);
		*ppvalue = pdict->values.value.refs + (pslot - kbot);
		return 0;
miss:		/* Key is missing, not double wrap. */
		if ( pslot == 0 )
		  pslot = kp;
		*ppvalue = pdict->values.value.refs + (pslot - kbot);
		return 0;
	}
	else
	{	ref *kbot = pdict->keys.value.refs;
		register ref *kp;
		ref *pslot = 0;
		int wrap = 0;
		for ( kp = kbot + hash_mod(hash, size) + 2; ; )
		{	--kp;
			if ( (etype = r_type(kp)) == ktype )
			{	/* Fast comparison if both keys are names */
				if ( name_index(kp) == nidx )
				{	*ppvalue = pdict->values.value.refs + (kp - kbot);
					return 1;
				}
			}
			else if ( etype == t_null )
			{	/* Empty, deleted, or wraparound. */
				/* Figure out which. */
				if ( kp == kbot )	/* wrap */
				{	if ( wrap++ )	/* wrapped twice */
					{	if ( pslot == 0 )
						  return_error(e_dictfull);
						break;
					}
					kp += size + 1;
				   }
				else if ( r_has_attr(kp, a_executable) )
				{	/* Deleted entry, save the slot. */
					if ( pslot == 0 )
						pslot = kp;
				}
				else	/* key not found */
					break;
			}
			else
			{	if ( obj_eq(kp, pkey) )
				{	*ppvalue = pdict->values.value.refs + (kp - kbot);
					return 1;
				}
			}
		}
		*ppvalue = pdict->values.value.refs +
			  ((pslot != 0 ? pslot : kp) - kbot);
		return 0;
	}
}

/*
 * Look up a (constant) C string in a dictionary.
 * Return 1 if found, <= 0 if not.
 */
int
dict_find_string(const ref *pdref, const char _ds *kstr, ref **ppvalue)
{	int code;
	ref kname;
	if ( (code = name_ref((const byte *)kstr, strlen(kstr), &kname, -1)) < 0 )
	  return code;
	return dict_find(pdref, &kname, ppvalue);
}

/* Check whether a dictionary is one of the permanent ones on the d-stack. */
bool
dict_is_permanent_on_dstack(const ref *pdref)
{	dict *pdict = pdref->value.pdict;
	int i;
	if ( d_stack.extension_size == 0 )
	  {	/* Only one block of d-stack. */
		for ( i = 0; i < min_dstack_size; ++i )
		  if ( dsbot[i].value.pdict == pdict )
		    return true;
	  }
	else
	  {	/* More than one block of d-stack. */
		uint count = ref_stack_count(&d_stack);
		for ( i = count - min_dstack_size; i < count; ++i )
		  if ( ref_stack_index(&d_stack, i)->value.pdict == pdict )
		    return true;
	  }
	return false;
}

/*
 * Look up a name on the dictionary stack.
 * Return the pointer to the value if found, 0 if not.
 */
ref *
dict_find_name_by_index(uint nidx)
{	ds_ptr pdref = dsp;
/* Since we know the hash function is the identity function, */
/* there's no point in allocating a separate variable for it. */
#define hash dict_name_index_hash(nidx)
	ref_packed kpack = packed_name_key(nidx);
	do
	   {	dict *pdict = pdref->value.pdict;
		uint size = npairs(pdict);
#ifdef DEBUG
		if ( gs_debug_c('D') )
		{	ref dnref;
			name_index_ref(nidx, &dnref);
			dputs("[D]lookup ");
			debug_print_name(&dnref);
			dprintf3(" in 0x%lx(%u/%u)\n",
				 (ulong)pdict, dict_length(pdref),
				 dict_maxlength(pdref));
		}
#endif
		if ( dict_is_packed(pdict) )
		   {	packed_search_1(DO_NOTHING, return,
					DO_NOTHING, goto miss);
			packed_search_2(DO_NOTHING, return,
					DO_NOTHING, break);
 miss:			;
		   }
		else
		   {	ref *kbot = pdict->keys.value.refs;
			register ref *kp;
			int wrap = 0;
			/* Search the dictionary */
			for ( kp = kbot + hash_mod(hash, size) + 2; ; )
			   {	--kp;
				if ( r_has_type(kp, t_name) )
				   {	if ( name_index(kp) == nidx )
					  return pdict->values.value.refs +
					    (kp - kbot);
				   }
				else if ( r_has_type(kp, t_null) )
				   {	/* Empty, deleted, or wraparound. */
					/* Figure out which. */
					if ( !r_has_attr(kp, a_executable) )
					  break;
					if ( kp == kbot )	/* wrap */
					   {	if ( wrap++ )
						  break;	/* 2 wraps */
						kp += size + 1;
					   }
				   }
			   }
		   }
	   }
	while ( pdref-- > dsbot );
	/* The name isn't in the top dictionary block. */
	/* If there are other blocks, search them now (more slowly). */
	if ( !d_stack.extension_size )		/* no more blocks */
	  return (ref *)0;
	{	/* We could use the STACK_LOOP macros, but for now, */
		/* we'll do things the simplest way. */
		ref key;
		uint i = dsp + 1 - dsbot;
		uint size = ref_stack_count(&d_stack);
		ref *pvalue;
		name_index_ref(nidx, &key);
		for ( ; i < size; i++ )
		  {	if ( dict_find(ref_stack_index(&d_stack, i),
				       &key, &pvalue) > 0
			   )
			  return pvalue;
		  }
	}
	return (ref *)0;
#undef hash
}

/*
 * Enter a key-value pair in a dictionary.
 * See idict.h for the possible return values.
 */
int
dict_put(ref *pdref /* t_dictionary */, const ref *pkey, const ref *pvalue)
{	int rcode = 0;
	int code;
	ref *pvslot;
	/* Check the value. */
	store_check_dest(pdref, pvalue);
top:	if ( (code = dict_find(pdref, pkey, &pvslot)) <= 0 )	/* not found */
	   {	/* Check for overflow */
		dict *pdict = pdref->value.pdict;
		ref kname;
		uint index;
		switch ( code )
		  {
		  case 0:
			break;
		  case e_dictfull:
			if ( !dict_auto_expand )
			  return_error(e_dictfull);
			code = dict_grow(pdref);
			if ( code < 0 )
			  return code;
			goto top;	/* keep things simple */
		  default:	/* e_typecheck */
			return code;
		  }
		index = pvslot - pdict->values.value.refs;
		/* If the key is a string, convert it to a name. */
		if ( r_has_type(pkey, t_string) )
		   {	int code = name_from_string(pkey, &kname);
			if ( code < 0 ) return code;
			pkey = &kname;
		   }
		if ( dict_is_packed(pdict) )
		   {	ref_packed *kp;
			if ( !r_has_type(pkey, t_name) ||
			     name_index(pkey) > packed_max_value
			   )
			   {	/* Change to unpacked representation. */
				int code = dict_unpack(pdref);
				if ( code < 0 )
				  return code;
				goto top;
			   }
			kp = (ref_packed *)(pdict->keys.value.packed + index);
			if ( ref_must_save(&pdict->keys) )
			   {	/* See initial comment for why it is safe */
				/* not to save the change if the keys */
				/* array itself is new. */
				ialloc_save_change(&pdict->keys, kp,
						   "dict_put(key)");
			   }
			*kp = pt_tag(pt_literal_name) + name_index(pkey);
		   }
		else
		   {	ref *kp = pdict->keys.value.refs + index;
			if_debug2('d', "[d]0x%lx: fill key at 0x%lx\n",
				  (ulong)pdict, (ulong)kp);
			store_check_dest(pdref, pkey);
			ref_assign_old(&pdict->keys, kp, pkey,
				       "dict_put(key)");	/* set key of pair */
		   }
		ref_save(pdref, &pdict->count, "dict_put(count)");
		pdict->count.value.intval++;
		/* If the key is a name, update its 1-element cache. */
		if ( r_has_type(pkey, t_name) )
		   {	name *pname = pkey->value.pname;
			if ( pname->pvalue == pv_no_defn &&
				(pdict == systemdict->value.pdict ||
				 dict_is_permanent_on_dstack(pdref)) &&
				/* Only set the cache if we aren't inside */
				/* a save.  This way, we never have to */
				/* undo setting the cache. */
				alloc_save_level(idmemory) == 0
			   )
			   {	/* Set the cache */
				if_debug0('d', "[d]set cache\n");
				pname->pvalue = pvslot;
			   }
			else
			  {	/* The cache is worthless. */
				if_debug0('d', "[d]no cache\n");
				pname->pvalue = pv_other;
			  }
		   }
		rcode = 1;
	   }
	if_debug8('d', "[d]0x%lx: put key 0x%lx 0x%lx\n  value at 0x%lx: old 0x%lx 0x%lx, new 0x%lx 0x%lx\n",
		  (ulong)pdref->value.pdict,
		  ((ulong *)pkey)[0], ((ulong *)pkey)[1], (ulong)pvslot,
		  ((ulong *)pvslot)[0], ((ulong *)pvslot)[1],
		  ((ulong *)pvalue)[0], ((ulong *)pvalue)[1]);
	ref_assign_old(&pdref->value.pdict->values, pvslot, pvalue,
		       "dict_put(value)");
	return rcode;
}

/*
 * Enter a key-value pair where the key is a (constant) C string.
 */
int
dict_put_string(ref *pdref, const char *kstr, const ref *pvalue)
{	int code;
	ref kname;
	if ( (code = name_ref((const byte *)kstr, strlen(kstr), &kname, 0)) < 0 )
	  return code;
	return dict_put(pdref, &kname, pvalue);
}

/* Remove an element from a dictionary. */
int
dict_undef(ref *pdref, const ref *pkey)
{	ref *pvslot;
	dict *pdict;
	uint index;
	if ( dict_find(pdref, pkey, &pvslot) <= 0 )
		return_error(e_undefined);
	/* Remove the entry from the dictionary. */
	pdict = pdref->value.pdict;
	index = pvslot - pdict->values.value.refs;
	if ( dict_is_packed(pdict) )
	   {	ref_packed *pkp =
		   (ref_packed *)(pdict->keys.value.packed + index);
		/* Since packed arrays don't have room for a saved bit, */
		/* always save the entire ref containing this key. */
		/* This wastes a little space, but undef is rare. */
		/* See the initial comment for why it is safe not to save */
		/* the change if the keys array itself is new. */
		if ( ref_must_save(&pdict->keys) )
		  ialloc_save_change(&pdict->keys, pkp, "dict_undef(key)");
		/* Accumulating deleted entries slows down lookup. */
		/* Detect the easy case where we can use an empty entry */
		/* rather than a deleted one, namely, when the next entry */
		/* in the probe order is empty. */
		if ( pkp[-1] == packed_key_empty )
		  *pkp = packed_key_empty;
		else
		  *pkp = packed_key_deleted;
	   }
	else				/* not packed */
	   {	ref *kp = pdict->keys.value.refs + index;
		make_null_old(&pdict->keys, kp, "dict_undef(key)");
		/* Accumulating deleted entries slows down lookup. */
		/* Detect the easy case where we can use an empty entry */
		/* rather than a deleted one, namely, when the next entry */
		/* in the probe order is empty. */
		if ( !r_has_type(kp - 1, t_null) ||	/* full entry */
		     r_has_attr(kp - 1, a_executable)	/* deleted or wraparound */
		    )
		  r_set_attrs(kp, a_executable);	/* mark as deleted */
	   }
	ref_save(pdref, &pdict->count, "dict_undef(count)");
	pdict->count.value.intval--;
	/* If the key is a name, update its 1-element cache. */
	if ( r_has_type(pkey, t_name) )
	  {	name *pname = pkey->value.pname;
		if ( pv_valid(pname->pvalue) )
		  {
#ifdef DEBUG
			/* Check the the cache is correct. */
			if ( !dict_is_permanent_on_dstack(pdref) )
			  lprintf1("dict_undef: cached name value pointer 0x%lx is incorrect!\n",
				   (ulong)pname->pvalue);
#endif
			/* Clear the cache */
			pname->pvalue = pv_no_defn;
		  }
	  }
	make_null_old(&pdict->values, pvslot, "dict_undef(value)");
	return 0;
}

/* Return the number of elements in a dictionary. */
uint
dict_length(const ref *pdref /* t_dictionary */)
{	return d_length(pdref->value.pdict);
}

/* Return the capacity of a dictionary. */
uint
dict_maxlength(const ref *pdref	/* t_dictionary */)
{	return d_maxlength(pdref->value.pdict);
}

/* Copy one dictionary into another. */
/* If new_only is true, only copy entries whose keys */
/* aren't already present in the destination. */
int
dict_copy_entries(const ref *pdrfrom /* t_dictionary */,
  ref *pdrto /* t_dictionary */, bool new_only)
{	int space = r_space(pdrto);
	int index;
	ref elt[2];
	ref *pvslot;
	int code;
	if ( space != avm_max )
	  {	/* Do the store check before starting the copy. */
		index = dict_first(pdrfrom);
		while ( (index = dict_next(pdrfrom, index, elt)) >= 0 )
		  if ( !new_only || dict_find(pdrto, &elt[0], &pvslot) <= 0 )
		  {	store_check_space(space, &elt[0]);
			store_check_space(space, &elt[1]);
		  }
	  }
	/* Now copy the contents. */
	index = dict_first(pdrfrom);
	while ( (index = dict_next(pdrfrom, index, elt)) >= 0 )
	  {	if ( new_only && dict_find(pdrto, &elt[0], &pvslot) > 0 )
		  continue;
		if ( (code = dict_put(pdrto, &elt[0], &elt[1])) < 0 )
		  return code;
	  }
	return 0;
}

/* Set the cached values computed from the top entry on the dstack. */
/* See dstack.h for details. */
private const ref_packed no_packed_keys[2] =
	{ packed_key_deleted, packed_key_empty };
void
dict_set_top(void)
{	dict *pdict = dsp->value.pdict;
	if_debug3('d', "[d]dsp = 0x%lx -> 0x%lx, key array type = %d\n",
		  (ulong)dsp, (ulong)pdict, r_type(&pdict->keys));
	if ( dict_is_packed(pdict) &&
	     r_has_attr(dict_access_ref(dsp), a_read)
	   )
	{	dtop_keys = pdict->keys.value.packed;
		dtop_npairs = npairs(pdict);
		dtop_values = pdict->values.value.refs;
	}
	else
	{	dtop_keys = no_packed_keys;
		dtop_npairs = 1;
	}
	if ( !r_has_attr(dict_access_ref(dsp), a_write) )
		dsspace = -1;
	else
		dsspace = r_space(dsp);
}

/* Resize a dictionary. */
int
dict_resize(ref *pdref, uint new_size)
{	dict *pdict = pdref->value.pdict;
	dict dnew;
	ref drto;
	int code;
	uint space;
	if ( new_size < d_length(pdict) )
	{	if ( !dict_auto_expand )
		  return_error(e_dictfull);
		new_size = d_length(pdict);
	}
	space = ialloc_space(idmemory);
	ialloc_set_space(idmemory, r_space(pdref));
	make_tav_new(&drto, t_dictionary, r_space(pdref) | a_all,
		     pdict, &dnew);
	if ( (code = dict_create_contents(new_size, &drto, dict_is_packed(pdict))) < 0 )
	{	ialloc_set_space(idmemory, space);
		return code;
	}
	/* We must suppress the store check, in case we are expanding */
	/* systemdict or another global dictionary that is allowed */
	/* to reference local objects. */
	r_set_space(&drto, avm_local);
	dict_copy(pdref, &drto);	/* can't fail */
	/* Free the old dictionary */
	ifree_ref_array(&pdict->values, "dict_resize(old values)");
	ifree_ref_array(&pdict->keys, "dict_resize(old keys)");
	ref_assign_old(pdref, &pdict->keys, &dnew.keys, "dict_resize(keys)");
	ref_assign_old(pdref, &pdict->values, &dnew.values, "dict_resize(values)");
	ref_save(pdref, &pdict->maxlength, "dict_resize(maxlength)");
	d_set_maxlength(pdict, new_size);
	ialloc_set_space(idmemory, space);
	dict_set_top();		/* just in case this is the top dict */
	return 0;
}

/* Grow a dictionary for dict_put. */
int
dict_grow(ref *pdref)
{	dict *pdict = pdref->value.pdict;
	/* We might have maxlength < npairs, if */
	/* dict_round_size is true. */
	ulong new_size = d_maxlength(pdict) * 3 / 2 + 2;
	if ( new_size > dict_max_size )
	{	if ( d_maxlength(pdict) == dict_max_size )
		  return_error(e_dictfull);
		new_size = dict_max_size;
	}
	if ( new_size > npairs(pdict) )
	{	int code = dict_resize(pdref, (uint)new_size);
		if ( code < 0 )
		  return code;
	}
	else
	{	/* maxlength < npairs, we can grow in place */
		ref_save(pdref, &pdict->maxlength, "dict_put(maxlength)");
		d_set_maxlength(pdict, new_size);
	}
	return 0;
}

/* Prepare to enumerate a dictionary. */
int
dict_first(const ref *pdref)
{	return (int)nslots(pdref->value.pdict);
}

/* Enumerate the next element of a dictionary. */
int
dict_next(const ref *pdref, int index, ref *eltp /* ref eltp[2] */)
{	dict *pdict = pdref->value.pdict;
	ref *vp = pdict->values.value.refs + index;
	while ( vp--, --index >= 0 )
	   {	array_get(&pdict->keys, (long)index, eltp);
		/* Make sure this is a valid entry. */
		if ( r_has_type(eltp, t_name) ||
		     (!dict_is_packed(pdict) && !r_has_type(eltp, t_null))
		   )
		   {	eltp[1] = *vp;
			if_debug6('d', "[d]0x%lx: index %d: %lx %lx, %lx %lx\n",
				(ulong)pdict, index,
				((ulong *)eltp)[0], ((ulong *)eltp)[1],
				((ulong *)vp)[0], ((ulong *)vp)[1]);
			return index;
		   }
	   }
	return -1;			/* no more elements */
}

/* Return the index of a value within a dictionary. */
int
dict_value_index(const ref *pdref, const ref *pvalue)
{	return (int)(pvalue - pdref->value.pdict->values.value.refs - 1);
}

/* Return the entry at a given index within a dictionary. */
/* If the index designates an unoccupied entry, return e_undefined. */
int
dict_index_entry(const ref *pdref, int index, ref *eltp /* ref eltp[2] */)
{	const dict *pdict = pdref->value.pdict;
	array_get(&pdict->keys, (long)(index + 1), eltp);
	if ( r_has_type(eltp, t_name) ||
	     (!dict_is_packed(pdict) && !r_has_type(eltp, t_null))
	   )
	  {	eltp[1] = pdict->values.value.refs[index + 1];
		return 0;
	  }
	return e_undefined;
}

/* After a garbage collection, scan the permanent dictionaries and */
/* update the cached value pointers in names. */
void
dstack_gc_cleanup(void)
{	uint count = ref_stack_count(&d_stack);
	uint dsi;
	for ( dsi = min_dstack_size; dsi > 0; --dsi )
	  {	const dict *pdict =
		  ref_stack_index(&d_stack, count - dsi)->value.pdict;
		uint size = nslots(pdict);
		ref *pvalue = pdict->values.value.refs;
		uint i;
		for ( i = 0; i < size; ++i, ++pvalue )
		  {	ref key;
			ref *old_pvalue;
			array_get(&pdict->keys, (long)i, &key);
			if ( r_has_type(&key, t_name) &&
			     pv_valid(old_pvalue = key.value.pname->pvalue)
			   )
			  {	/*
				 * The name only has a single definition,
				 * so it must be this one.  Check to see if
				 * no relocation is actually needed; if so,
				 * we can skip the entire dictionary.
				 */
				if ( old_pvalue == pvalue )
				  {	if_debug1('d', "[d]skipping dstack entry %d\n",
						  dsi - 1);
					break;
				  }
				/* Update the value pointer. */
				key.value.pname->pvalue = pvalue;
			  }
		  }
	  }
}