1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
/* Copyright (C) 1992, 1995 Aladdin Enterprises. All rights reserved.
This file is part of GNU Ghostscript.
GNU Ghostscript is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to
anyone for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing. Refer
to the GNU Ghostscript General Public License for full details.
*/
/* scfe.c */
/* CCITTFax encoding filter */
#include "stdio_.h" /* includes std.h */
#include "memory_.h"
#include "gdebug.h"
#include "strimpl.h"
#include "scf.h"
#include "scfx.h"
/* ------ Macros and support routines ------ */
/* Statistics */
#ifdef DEBUG
private struct _r1d { ulong termination[64], make_up[41]; } runs_1d[2];
# define count_run(tab, i) ((tab)[i]++)
#else
# define count_run(cnt, n) DO_NOTHING
#endif
/* Put a run onto the output stream. */
/* Free variables: q, wlimit, status. */
#define cf_ensure_put_runs(n, color, out)\
if ( wlimit - q < (n) * cfe_max_code_bytes ) /* worst case */\
{ ss->run_color = color;\
status = 1;\
goto out;\
}
#define cf_put_run(ss, lenv, tt, mut, tab)\
{ cfe_run rr;\
if ( lenv >= 64 )\
{ while ( lenv >= 2560 + 64 )\
{ rr = mut[40];\
count_run(tab.make_up, 40);\
hc_put_value(ss, q, rr.code, rr.code_length);\
lenv -= 2560;\
}\
rr = mut[lenv >> 6];\
count_run(tab.make_up, lenv >> 6);\
hc_put_value(ss, q, rr.code, rr.code_length);\
lenv &= 63;\
}\
rr = tt[lenv];\
count_run(tab.termination, lenv);\
hc_put_value(ss, q, rr.code, rr.code_length);\
}
#define cf_put_white_run(ss, lenv)\
cf_put_run(ss, lenv, cf_white_termination, cf_white_make_up, runs_1d[0])
#define cf_put_black_run(ss, lenv)\
cf_put_run(ss, lenv, cf_black_termination, cf_black_make_up, runs_1d[1])
/* ------ Stream procedures ------ */
private_st_CFE_state();
#define ss ((stream_CFE_state *)st)
private void s_CFE_release(P1(stream_state *));
/*
* For the 2-D encoding modes, we leave the previous complete scan line
* at the beginning of the buffer, and start the new data after it.
*/
/* Initialize CCITTFaxEncode filter */
private int
s_CFE_init(register stream_state *st)
{ int columns = ss->Columns;
int raster = ss->raster = (columns + 7) >> 3;
s_hce_init_inline(ss);
ss->count = raster << 3; /* starting a scan line */
ss->lbuf = ss->lprev = 0;
if ( columns > cfe_max_width )
return ERRC; /****** WRONG ******/
ss->lbuf = gs_alloc_bytes(st->memory, raster + 1,
"CFE lbuf");
if ( ss->lbuf == 0 )
{ s_CFE_release(st);
return ERRC; /****** WRONG ******/
}
if ( ss->K != 0 )
{ ss->lprev = gs_alloc_bytes(st->memory, raster + 1,
"CFE lprev");
if ( ss->lprev == 0 )
{ s_CFE_release(st);
return ERRC; /****** WRONG ******/
}
/* Clear the initial reference line for 2-D encoding. */
/* Make sure it is terminated properly. */
memset(ss->lprev, (ss->BlackIs1 ? 0 : 0xff), raster);
if ( columns & 7 )
ss->lprev[raster - 1] ^= 0x80 >> (columns & 7);
else
ss->lprev[raster] = ~ss->lprev[0];
}
ss->copy_count = raster;
ss->new_line = true;
ss->k_left = (ss->K > 0 ? 1 : ss->K);
return 0;
}
/* Release the filter. */
private void
s_CFE_release(stream_state *st)
{ gs_free_object(st->memory, ss->lprev, "CFE lprev(close)");
gs_free_object(st->memory, ss->lbuf, "CFE lbuf(close)");
}
/* Flush the buffer */
private int cf_encode_1d(P4(stream_CFE_state *, const byte *,
stream_cursor_write *, uint));
private int cf_encode_2d(P5(stream_CFE_state *, const byte *,
stream_cursor_write *, uint, const byte *));
private int
s_CFE_process(stream_state *st, stream_cursor_read *pr,
stream_cursor_write *pw, bool last)
{ const byte *rlimit = pr->limit;
byte *wlimit = pw->limit;
int raster = ss->raster;
int initial_count = raster << 3;
int end_count = -ss->Columns & 7;
byte end_mask = 1 << (-ss->Columns & 7);
int status = 0;
hce_declare_state;
hce_load_state();
while ( pr->ptr < rlimit )
{ byte *end = ss->lbuf + raster - 1;
if_debug7('w', "[w]CFE: copy_count = %d, pr = 0x%lx(%d)0x%lx, pw = 0x%lx(%d)0x%lx\n",
ss->copy_count, (ulong)pr->ptr,
(int)(rlimit - pr->ptr), (ulong)rlimit,
(ulong)pw->ptr, (int)(wlimit - pw->ptr),
(ulong)wlimit);
/* Check whether we are still accumulating a scan line. */
if ( ss->copy_count != 0 )
{ int rcount = rlimit - pr->ptr;
int ccount = min(rcount, ss->copy_count);
memcpy(ss->lbuf + raster - ss->copy_count,
pr->ptr + 1, ccount);
pr->ptr += ccount;
if ( (ss->copy_count -= ccount) != 0 )
goto out;
/*
* Ensure that the scan line ends with two
* polarity changes.
*/
{ byte end_bit = *end & end_mask;
byte not_bit = end_bit ^ end_mask;
*end &= -end_mask;
if ( end_mask == 1 )
end[1] = (end_bit ? 0x40 : 0x80);
else if ( end_mask == 2 )
*end |= not_bit >> 1, end[1] = end_bit << 7;
else
*end |= (not_bit >> 1) | (end_bit >> 2);
}
}
if ( ss->new_line )
{ /* Start a new scan line. */
byte *q = pw->ptr;
if ( wlimit - q < 4 + cfe_max_code_bytes * 2 ) /* byte align, aligned eol, run_horizontal + 2 runs */
{ status = 1;
break;
}
#ifdef DEBUG
if ( ss->K > 0 )
{ if_debug1('w', "[w]new row, k_left=%d\n",
ss->k_left);
}
else
{ if_debug0('w', "[w]new row\n");
}
#endif
if ( ss->EndOfLine )
{ const cfe_run *rp =
(ss->K <= 0 ? &cf_run_eol :
ss->k_left > 1 ? &cf2_run_eol_2d :
&cf2_run_eol_1d);
cfe_run run;
if ( ss->EncodedByteAlign )
{ run = *rp;
/* Pad the run on the left */
/* so it winds up byte-aligned. */
run.code_length +=
(bits_left - run_eol_code_length) & 7;
if ( run.code_length > 16 ) /* <= 23 */
bits_left -= run.code_length & 7,
run.code_length = 16;
rp = &run;
}
hc_put_code(ss, q, rp);
pw->ptr = q;
}
else if ( ss->EncodedByteAlign )
bits_left &= ~7;
ss->run_color = 0;
ss->new_line = false;
}
hce_store_state();
if ( ss->K > 0 )
{ /* Group 3, mixed encoding */
if ( --(ss->k_left) ) /* Use 2-D encoding */
{ status = cf_encode_2d(ss, ss->lbuf, pw, end_count, ss->lprev);
if ( status )
{ /* We didn't finish encoding */
/* the line, so back out. */
ss->k_left++;
}
}
else /* Use 1-D encoding */
{ status = cf_encode_1d(ss, ss->lbuf, pw, end_count);
if ( status )
{ /* Didn't finish encoding the line, */
/* back out. */
ss->k_left++;
}
else
ss->k_left = ss->K;
}
}
else /* Uniform encoding */
{ status = (ss->K == 0 ?
cf_encode_1d(ss, ss->lbuf, pw, end_count) :
cf_encode_2d(ss, ss->lbuf, pw, end_count, ss->lprev));
}
hce_load_state();
if ( status )
break;
if ( ss->count == end_count )
{ /* Finished a scan line, start a new one. */
ss->count = initial_count;
ss->new_line = true;
if ( ss->K != 0 )
{ byte *temp = ss->lbuf;
ss->lbuf = ss->lprev;
ss->lprev = temp;
}
ss->copy_count = raster;
}
}
/* Check for end of data. */
if ( last && status == 0 )
{ const cfe_run *rp =
(ss->K > 0 ? &cf2_run_eol_1d : &cf_run_eol);
int i = (!ss->EndOfBlock ? 0 : ss->K < 0 ? 2 : 6);
uint bits_to_write =
hc_bits_size - bits_left + i * rp->code_length;
byte *q = pw->ptr;
if ( wlimit - q < (bits_to_write + 7) >> 3 )
{ status = 1;
goto out;
}
if ( ss->EncodedByteAlign )
bits_left &= ~7;
while ( --i >= 0 )
hc_put_code(ss, q, rp);
/* Force out the last byte or bytes. */
pw->ptr = q = hc_put_last_bits((stream_hc_state *)ss, q);
goto ns;
}
out: hce_store_state();
ns: if_debug9('w', "[w]CFE exit %d: count = %d, run_color = %d,\n pr = 0x%lx(%d)0x%lx; pw = 0x%lx(%d)0x%lx\n",
status, ss->count, ss->run_color,
(ulong)pr->ptr, (int)(rlimit - pr->ptr), (ulong)rlimit,
(ulong)pw->ptr, (int)(wlimit - pw->ptr), (ulong)wlimit);
#ifdef DEBUG
if ( pr->ptr > rlimit || pw->ptr > wlimit )
{ lprintf("Pointer overrun!\n");
status = ERRC;
}
if ( gs_debug_c('w') && status == 1 )
{ int ti;
for ( ti = 0; ti < 2; ti++ )
{ int i;
ulong total;
dprintf1("[w]runs[%d]", ti);
for ( i = 0, total = 0; i < 41; i++ )
dprintf1(" %lu", runs_1d[ti].make_up[i]),
total += runs_1d[ti].make_up[i];
dprintf1(" total=%lu\n\t", total);
for ( i = 0, total = 0; i < 64; i++ )
dprintf1(" %lu", runs_1d[ti].termination[i]),
total += runs_1d[ti].termination[i];
dprintf1(" total=%lu\n", total);
}
}
#endif
return status;
}
#undef ss
/*
* For all encoding methods, we know we have a full scan line of input,
* but we must be prepared to suspend if we run out of space to store
* the output.
*/
/* Encode a 1-D scan line. */
private int
cf_encode_1d(stream_CFE_state *ss, const byte *lbuf,
stream_cursor_write *pw, uint end_count)
{ uint count = ss->count;
byte *q = pw->ptr;
byte *wlimit = pw->limit;
int rlen;
int status = 0;
hce_declare_state;
{ register const byte *p = lbuf + ss->raster - ((count + 7) >> 3);
byte invert = (ss->BlackIs1 ? 0 : 0xff);
/* Invariant: data = p[-1] ^ invert. */
register uint data = *p++ ^ invert;
hce_load_state();
while ( count != end_count )
{ /* Parse a white run. */
cf_ensure_put_runs(2, 0, out);
skip_white_pixels(data, p, count, invert, rlen);
cf_put_white_run(ss, rlen);
if ( count == end_count )
break;
/* Parse a black run. */
skip_black_pixels(data, p, count, invert, rlen);
cf_put_black_run(ss, rlen);
}
}
out: hce_store_state();
pw->ptr = q;
ss->count = count;
return status;
}
/* Encode a 2-D scan line. */
private int
cf_encode_2d(stream_CFE_state *ss, const byte *lbuf,
stream_cursor_write *pw, uint end_count, const byte *lprev)
{ byte invert_white = (ss->BlackIs1 ? 0 : 0xff);
byte invert = (ss->run_color ? ~invert_white : invert_white);
register uint count = ss->count;
const byte *p = lbuf + ss->raster - ((count + 7) >> 3);
byte *q = pw->ptr;
byte *wlimit = pw->limit;
register uint data = *p++ ^ invert;
int status = 0;
hce_declare_state;
/* In order to handle the nominal 'changing white' at the */
/* beginning of each scan line, we need to suppress the test for */
/* an initial black bit in the reference line when we are at */
/* the very beginning of the scan line. To avoid an extra test, */
/* we use two different mask tables. */
static const byte initial_count_bit[8] =
{ 0, 1, 2, 4, 8, 0x10, 0x20, 0x40 };
static const byte further_count_bit[8] =
{ 0x80, 1, 2, 4, 8, 0x10, 0x20, 0x40 };
const byte _ds *count_bit =
(count == ss->raster << 3 ? initial_count_bit : further_count_bit);
hce_load_state();
while ( count != end_count )
{ /* If invert == invert_white, white and black have their */
/* correct meanings; if invert == ~invert_white, */
/* black and white are interchanged. */
uint a0 = count;
uint a1;
#define b1 (a1 - diff) /* only for printing */
int diff;
uint prev_count = count;
const byte *prev_p = p - lbuf + lprev;
byte prev_data = prev_p[-1] ^ invert;
int rlen;
/* Make sure we have room for a run_horizontal plus */
/* two data runs. */
cf_ensure_put_runs(3, invert != invert_white, out);
/* Find the a1 and b1 transitions. */
skip_white_pixels(data, p, count, invert, rlen);
a1 = count;
if ( (prev_data & count_bit[prev_count & 7]) )
{ /* Look for changing white first. */
skip_black_pixels(prev_data, prev_p, prev_count, invert, rlen);
}
count_bit = further_count_bit; /* no longer at beginning */
pass: if ( prev_count != end_count )
{ skip_white_pixels(prev_data, prev_p, prev_count, invert, rlen);
}
diff = a1 - prev_count; /* i.e., logical b1 - a1 */
/* In all the comparisons below, remember that count */
/* runs downward, not upward, so the comparisons are */
/* reversed. */
if ( diff <= -2 )
{ /* Could be a pass mode. Find b2. */
if ( prev_count != end_count )
{ skip_black_pixels(prev_data, prev_p,
prev_count, invert, rlen);
}
if ( prev_count > a1 )
{ /* Use pass mode. */
if_debug4('W', "[W]pass: count = %d, a1 = %d, b1 = %d, new count = %d\n",
a0, a1, b1, prev_count);
hc_put_value(ss, q, cf2_run_pass_value,
cf2_run_pass_length);
cf_ensure_put_runs(3, invert != invert_white,
pass_out);
a0 = prev_count;
goto pass;
pass_out: count = prev_count;
break;
}
}
/* Check for vertical coding. */
if ( diff <= 3 && diff >= -3 )
{ /* Use vertical coding. */
const cfe_run *cp;
if_debug5('W', "[W]vertical %d: count = %d, a1 = %d, b1 = %d, new count = %d\n",
diff, a0, a1, b1, count);
cp = &cf2_run_vertical[diff + 3];
hc_put_code(ss, q, cp);
invert = ~invert; /* a1 polarity changes */
data ^= 0xff;
continue;
}
/* No luck, use horizontal coding. */
if ( count != end_count )
{ skip_black_pixels(data, p, count, invert, rlen); /* find a2 */
}
hc_put_value(ss, q, cf2_run_horizontal_value,
cf2_run_horizontal_length);
a0 -= a1;
a1 -= count;
if ( invert == invert_white )
{ if_debug3('W', "[W]horizontal: white = %d, black = %d, new count = %d\n",
a0, a1, count);
cf_put_white_run(ss, a0);
cf_put_black_run(ss, a1);
}
else
{ if_debug3('W', "[W]horizontal: black = %d, white = %d, new count = %d\n",
a0, a1, count);
cf_put_black_run(ss, a0);
cf_put_white_run(ss, a1);
#undef b1
}
}
out: hce_store_state();
pw->ptr = q;
ss->count = count;
return status;
}
/* Stream template */
const stream_template s_CFE_template =
{ &st_CFE_state, s_CFE_init, s_CFE_process,
2, 15, /* 31 left-over bits + 7 bits of padding + 6 13-bit EOLs */
s_CFE_release
};
|