File: zarith.c

package info (click to toggle)
gs 3.33-7
  • links: PTS
  • area: main
  • in suites: hamm
  • size: 7,436 kB
  • ctags: 15,511
  • sloc: ansic: 92,150; asm: 684; sh: 486; makefile: 91
file content (285 lines) | stat: -rw-r--r-- 6,825 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/* Copyright (C) 1989, 1992, 1993, 1994 Aladdin Enterprises.  All rights reserved.
  
  This file is part of GNU Ghostscript.
  
  GNU Ghostscript is distributed in the hope that it will be useful, but
  WITHOUT ANY WARRANTY.  No author or distributor accepts responsibility to
  anyone for the consequences of using it or for whether it serves any
  particular purpose or works at all, unless he says so in writing.  Refer
  to the GNU Ghostscript General Public License for full details.
  
*/

/* zarith.c */
/* Arithmetic operators */
#include "math_.h"
#include "ghost.h"
#include "errors.h"
#include "oper.h"
#include "store.h"

/****** NOTE: none of the arithmetic operators  ******/
/****** currently check for floating exceptions ******/

/* Define max and min values for what will fit in value.intval. */
#define min_intval min_long
#define max_intval max_long
#define max_half_intval ((1 << (size_of(long) / 2 - 1)) - 1)

/* Macros for generating non-integer cases for arithmetic operations. */
/* 'frob' is one of the arithmetic operators, +, -, or *. */
#define non_int_cases(frob,frob_equals)\
 switch ( r_type(op) ) {\
  default: return_op_typecheck(op);\
  case t_real: switch ( r_type(op - 1) ) {\
   default: return_op_typecheck(op - 1);\
   case t_real: op[-1].value.realval frob_equals op->value.realval; break;\
   case t_integer: make_real(op - 1, op[-1].value.intval frob op->value.realval);\
  } break;\
  case t_integer: switch ( r_type(op - 1) ) {\
   default: return_op_typecheck(op - 1);\
   case t_real: op[-1].value.realval frob_equals op->value.intval; break;\
   case t_integer:
#define end_cases()\
  } }

/* <num1> <num2> add <sum> */
/* We make this into a separate procedure because */
/* the interpreter will almost always call it directly. */
int
zop_add(register os_ptr op)
{	non_int_cases(+, +=)
	   {	long int2 = op->value.intval;
		if ( ((op[-1].value.intval += int2) ^ int2) < 0 &&
		     ((op[-1].value.intval - int2) ^ int2) >= 0
		   )
		   {	/* Overflow, convert to real */
			make_real(op - 1, (float)(op[-1].value.intval - int2) + int2);
		   }
	   }
	end_cases()
	return 0;
}
int
zadd(os_ptr op)
{	int code = zop_add(op);
	if ( code == 0 ) { pop(1); }
	return code;
}

/* <num1> <num2> div <real_quotient> */
private int
zdiv(register os_ptr op)
{	register os_ptr op1 = op - 1;
	/* We can't use the non_int_cases macro, */
	/* because we have to check explicitly for op == 0. */
	switch ( r_type(op) )
	   {
	default:
		return_op_typecheck(op);
	case t_real:
		if ( op->value.realval == 0 )
			return_error(e_undefinedresult);
		switch ( r_type(op1) )
		   {
		default:
			return_op_typecheck(op1);
		case t_real:
			op1->value.realval /= op->value.realval;
			break;
		case t_integer:
			make_real(op1, op1->value.intval / op->value.realval);
		   }
		break;
	case t_integer:
		if ( op->value.intval == 0 )
			return_error(e_undefinedresult);
		switch ( r_type(op1) )
		   {
		default:
			return_op_typecheck(op1);
		case t_real:
			op1->value.realval /= op->value.intval; break;
		case t_integer:
			make_real(op1, (float)op1->value.intval / op->value.intval);
		   }
	   }
	pop(1);
	return 0;
}

/* <num1> <num2> mul <product> */
private int
zmul(register os_ptr op)
{	non_int_cases(*, *=)
	   {	long int1 = op[-1].value.intval;
		long int2 = op->value.intval;
		long abs1 = (int1 >= 0 ? int1 : - int1);
		long abs2 = (int2 >= 0 ? int2 : - int2);
		float fprod;
		if (	(abs1 > max_half_intval || abs2 > max_half_intval) &&
			/* At least one of the operands is very large. */
			/* Check for integer overflow. */
			abs1 != 0 &&
			abs2 > max_intval / abs1 &&
			/* Check for the boundary case */
			(fprod = (float)int1 * int2,
			 (int1 * int2 != min_intval ||
			 fprod != (float)min_intval))
		   )
			make_real(op - 1, fprod);
		else
			op[-1].value.intval = int1 * int2;
	   }
	end_cases()
	pop(1);
	return 0;
}

/* <num1> <num2> sub <difference> */
/* We make this into a separate procedure because */
/* the interpreter will almost always call it directly. */
int
zop_sub(register os_ptr op)
{	non_int_cases(-, -=)
	   {	long int1 = op[-1].value.intval;
		if ( (int1 ^ (op[-1].value.intval = int1 - op->value.intval)) < 0 &&
		     (int1 ^ op->value.intval) < 0
		   )
		   {	/* Overflow, convert to real */
			make_real(op - 1, (float)int1 - op->value.intval);
		   }
	   }
	end_cases()
	return 0;
}
int
zsub(os_ptr op)
{	int code = zop_sub(op);
	if ( code == 0 ) { pop(1); }
	return code;
}

/* <num1> <num2> idiv <int_quotient> */
private int
zidiv(register os_ptr op)
{	register os_ptr op1 = op - 1;
	check_type(*op, t_integer);
	check_type(*op1, t_integer);
	if ( op->value.intval == 0 )
	  return_error(e_undefinedresult);
	if ( (op1->value.intval /= op->value.intval) ==
		min_intval && op->value.intval == -1
	   )
	   {	/* Anomalous boundary case, fail. */
		return_error(e_rangecheck);
	   }
	pop(1);
	return 0;
}

/* <int1> <int2> mod <remainder> */
private int
zmod(register os_ptr op)
{	check_type(*op, t_integer);
	check_type(op[-1], t_integer);
	if ( op->value.intval == 0 )
		return_error(e_undefinedresult);
	op[-1].value.intval %= op->value.intval;
	pop(1);
	return 0;
}

/* <num1> neg <num2> */
private int
zneg(register os_ptr op)
{	switch ( r_type(op) )
	   {
	default:
		return_op_typecheck(op);
	case t_real:
		op->value.realval = -op->value.realval;
		break;
	case t_integer:
		if ( op->value.intval == min_intval )
			make_real(op, -(float)min_intval);
		else
			op->value.intval = -op->value.intval;
	   }
	return 0;
}

/* <num1> ceiling <num2> */
private int
zceiling(register os_ptr op)
{	switch ( r_type(op) )
	   {
	default:
		return_op_typecheck(op);
	case t_real:
		op->value.realval = ceil(op->value.realval);
	case t_integer: ;
	   }
	return 0;
}

/* <num1> floor <num2> */
private int
zfloor(register os_ptr op)
{	switch ( r_type(op) )
	   {
	default:
		return_op_typecheck(op);
	case t_real:
		op->value.realval = floor(op->value.realval);
	case t_integer: ;
	   }
	return 0;
}

/* <num1> round <num2> */
private int
zround(register os_ptr op)
{	switch ( r_type(op) )
	   {
	default:
		return_op_typecheck(op);
	case t_real:
		op->value.realval = floor(op->value.realval + 0.5);
	case t_integer: ;
	   }
	return 0;
}

/* <num1> truncate <num2> */
private int
ztruncate(register os_ptr op)
{	switch ( r_type(op) )
	   {
	default:
		return_op_typecheck(op);
	case t_real:
		op->value.realval =
			(op->value.realval < 0.0 ?
				ceil(op->value.realval) :
				floor(op->value.realval));
	case t_integer: ;
	   }
	return 0;
}

/* ------ Initialization table ------ */

BEGIN_OP_DEFS(zarith_op_defs) {
	{"2add", zadd},
	{"1ceiling", zceiling},
	{"2div", zdiv},
	{"2idiv", zidiv},
	{"1floor", zfloor},
	{"2mod", zmod},
	{"2mul", zmul},
	{"1neg", zneg},
	{"1round", zround},
	{"2sub", zsub},
	{"1truncate", ztruncate},
END_OP_DEFS(0) }