1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
/* Copyright (C) 1989, 1992, 1993, 1994 Aladdin Enterprises. All rights reserved.
This file is part of GNU Ghostscript.
GNU Ghostscript is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to
anyone for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing. Refer
to the GNU Ghostscript General Public License for full details.
*/
/* zarith.c */
/* Arithmetic operators */
#include "math_.h"
#include "ghost.h"
#include "errors.h"
#include "oper.h"
#include "store.h"
/****** NOTE: none of the arithmetic operators ******/
/****** currently check for floating exceptions ******/
/* Define max and min values for what will fit in value.intval. */
#define min_intval min_long
#define max_intval max_long
#define max_half_intval ((1 << (size_of(long) / 2 - 1)) - 1)
/* Macros for generating non-integer cases for arithmetic operations. */
/* 'frob' is one of the arithmetic operators, +, -, or *. */
#define non_int_cases(frob,frob_equals)\
switch ( r_type(op) ) {\
default: return_op_typecheck(op);\
case t_real: switch ( r_type(op - 1) ) {\
default: return_op_typecheck(op - 1);\
case t_real: op[-1].value.realval frob_equals op->value.realval; break;\
case t_integer: make_real(op - 1, op[-1].value.intval frob op->value.realval);\
} break;\
case t_integer: switch ( r_type(op - 1) ) {\
default: return_op_typecheck(op - 1);\
case t_real: op[-1].value.realval frob_equals op->value.intval; break;\
case t_integer:
#define end_cases()\
} }
/* <num1> <num2> add <sum> */
/* We make this into a separate procedure because */
/* the interpreter will almost always call it directly. */
int
zop_add(register os_ptr op)
{ non_int_cases(+, +=)
{ long int2 = op->value.intval;
if ( ((op[-1].value.intval += int2) ^ int2) < 0 &&
((op[-1].value.intval - int2) ^ int2) >= 0
)
{ /* Overflow, convert to real */
make_real(op - 1, (float)(op[-1].value.intval - int2) + int2);
}
}
end_cases()
return 0;
}
int
zadd(os_ptr op)
{ int code = zop_add(op);
if ( code == 0 ) { pop(1); }
return code;
}
/* <num1> <num2> div <real_quotient> */
private int
zdiv(register os_ptr op)
{ register os_ptr op1 = op - 1;
/* We can't use the non_int_cases macro, */
/* because we have to check explicitly for op == 0. */
switch ( r_type(op) )
{
default:
return_op_typecheck(op);
case t_real:
if ( op->value.realval == 0 )
return_error(e_undefinedresult);
switch ( r_type(op1) )
{
default:
return_op_typecheck(op1);
case t_real:
op1->value.realval /= op->value.realval;
break;
case t_integer:
make_real(op1, op1->value.intval / op->value.realval);
}
break;
case t_integer:
if ( op->value.intval == 0 )
return_error(e_undefinedresult);
switch ( r_type(op1) )
{
default:
return_op_typecheck(op1);
case t_real:
op1->value.realval /= op->value.intval; break;
case t_integer:
make_real(op1, (float)op1->value.intval / op->value.intval);
}
}
pop(1);
return 0;
}
/* <num1> <num2> mul <product> */
private int
zmul(register os_ptr op)
{ non_int_cases(*, *=)
{ long int1 = op[-1].value.intval;
long int2 = op->value.intval;
long abs1 = (int1 >= 0 ? int1 : - int1);
long abs2 = (int2 >= 0 ? int2 : - int2);
float fprod;
if ( (abs1 > max_half_intval || abs2 > max_half_intval) &&
/* At least one of the operands is very large. */
/* Check for integer overflow. */
abs1 != 0 &&
abs2 > max_intval / abs1 &&
/* Check for the boundary case */
(fprod = (float)int1 * int2,
(int1 * int2 != min_intval ||
fprod != (float)min_intval))
)
make_real(op - 1, fprod);
else
op[-1].value.intval = int1 * int2;
}
end_cases()
pop(1);
return 0;
}
/* <num1> <num2> sub <difference> */
/* We make this into a separate procedure because */
/* the interpreter will almost always call it directly. */
int
zop_sub(register os_ptr op)
{ non_int_cases(-, -=)
{ long int1 = op[-1].value.intval;
if ( (int1 ^ (op[-1].value.intval = int1 - op->value.intval)) < 0 &&
(int1 ^ op->value.intval) < 0
)
{ /* Overflow, convert to real */
make_real(op - 1, (float)int1 - op->value.intval);
}
}
end_cases()
return 0;
}
int
zsub(os_ptr op)
{ int code = zop_sub(op);
if ( code == 0 ) { pop(1); }
return code;
}
/* <num1> <num2> idiv <int_quotient> */
private int
zidiv(register os_ptr op)
{ register os_ptr op1 = op - 1;
check_type(*op, t_integer);
check_type(*op1, t_integer);
if ( op->value.intval == 0 )
return_error(e_undefinedresult);
if ( (op1->value.intval /= op->value.intval) ==
min_intval && op->value.intval == -1
)
{ /* Anomalous boundary case, fail. */
return_error(e_rangecheck);
}
pop(1);
return 0;
}
/* <int1> <int2> mod <remainder> */
private int
zmod(register os_ptr op)
{ check_type(*op, t_integer);
check_type(op[-1], t_integer);
if ( op->value.intval == 0 )
return_error(e_undefinedresult);
op[-1].value.intval %= op->value.intval;
pop(1);
return 0;
}
/* <num1> neg <num2> */
private int
zneg(register os_ptr op)
{ switch ( r_type(op) )
{
default:
return_op_typecheck(op);
case t_real:
op->value.realval = -op->value.realval;
break;
case t_integer:
if ( op->value.intval == min_intval )
make_real(op, -(float)min_intval);
else
op->value.intval = -op->value.intval;
}
return 0;
}
/* <num1> ceiling <num2> */
private int
zceiling(register os_ptr op)
{ switch ( r_type(op) )
{
default:
return_op_typecheck(op);
case t_real:
op->value.realval = ceil(op->value.realval);
case t_integer: ;
}
return 0;
}
/* <num1> floor <num2> */
private int
zfloor(register os_ptr op)
{ switch ( r_type(op) )
{
default:
return_op_typecheck(op);
case t_real:
op->value.realval = floor(op->value.realval);
case t_integer: ;
}
return 0;
}
/* <num1> round <num2> */
private int
zround(register os_ptr op)
{ switch ( r_type(op) )
{
default:
return_op_typecheck(op);
case t_real:
op->value.realval = floor(op->value.realval + 0.5);
case t_integer: ;
}
return 0;
}
/* <num1> truncate <num2> */
private int
ztruncate(register os_ptr op)
{ switch ( r_type(op) )
{
default:
return_op_typecheck(op);
case t_real:
op->value.realval =
(op->value.realval < 0.0 ?
ceil(op->value.realval) :
floor(op->value.realval));
case t_integer: ;
}
return 0;
}
/* ------ Initialization table ------ */
BEGIN_OP_DEFS(zarith_op_defs) {
{"2add", zadd},
{"1ceiling", zceiling},
{"2div", zdiv},
{"2idiv", zidiv},
{"1floor", zfloor},
{"2mod", zmod},
{"2mul", zmul},
{"1neg", zneg},
{"1round", zround},
{"2sub", zsub},
{"1truncate", ztruncate},
END_OP_DEFS(0) }
|