1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
/* Copyright (C) 1989, 1992, 1993 Aladdin Enterprises. All rights reserved.
This file is part of GNU Ghostscript.
GNU Ghostscript is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to
anyone for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing. Refer
to the GNU Ghostscript General Public License for full details.
*/
/* zmath.c */
/* Mathematical operators */
#include "math_.h"
#include "ghost.h"
#include "errors.h"
#include "oper.h"
#include "store.h"
/* Current state of random number generator. */
/* We have to implement this ourselves because */
/* the Unix rand doesn't provide anything equivalent to rrand. */
/* Note that the value always lies in the range [0..0x7ffffffe], */
/* even if longs are longer than 32 bits. */
private long rand_state;
/* Initialize the random number generator. */
private void
zmath_init(void)
{ rand_state = 1;
}
/****** NOTE: none of these operators currently ******/
/****** check for floating over- or underflow. ******/
/* <num> sqrt <real> */
private int
zsqrt(register os_ptr op)
{ float num;
int code = num_params(op, 1, &num);
if ( code < 0 )
return code;
if ( num < 0.0 )
return_error(e_rangecheck);
make_real(op, sqrt(num));
return 0;
}
/* <num> arccos <real> */
private int
zarccos(register os_ptr op)
{ float num, result;
int code = num_params(op, 1, &num);
if ( code < 0 ) return code;
result = acos(num) * radians_to_degrees;
make_real(op, result);
return 0;
}
/* <num> arcsin <real> */
private int
zarcsin(register os_ptr op)
{ float num, result;
int code = num_params(op, 1, &num);
if ( code < 0 ) return code;
result = asin(num) * radians_to_degrees;
make_real(op, result);
return 0;
}
/* <num> <denom> atan <real> */
private int
zatan(register os_ptr op)
{ float args[2];
float result;
int code = num_params(op, 2, args);
if ( code < 0 ) return code;
if ( args[0] == 0 ) /* on X-axis, special case */
{ if ( args[1] == 0 )
return_error(e_undefinedresult);
result = (args[1] < 0 ? 180 : 0);
}
else
{ result = atan2(args[0], args[1]) * radians_to_degrees;
if ( result < 0 ) result += 360;
}
make_real(op - 1, result);
pop(1);
return 0;
}
/* <num> cos <real> */
private int
zcos(register os_ptr op)
{ float angle;
int code = num_params(op, 1, &angle);
if ( code < 0 ) return code;
make_real(op, cos(angle * degrees_to_radians));
return 0;
}
/* <num> sin <real> */
private int
zsin(register os_ptr op)
{ float angle;
int code = num_params(op, 1, &angle);
if ( code < 0 ) return code;
make_real(op, sin(angle * degrees_to_radians));
return 0;
}
/* <base> <exponent> exp <real> */
private int
zexp(register os_ptr op)
{ float args[2];
float result;
double ipart;
int code = num_params(op, 2, args);
if ( code < 0 ) return code;
if ( args[0] == 0.0 && args[1] == 0.0 )
return_error(e_undefinedresult);
if ( args[0] < 0.0 && modf(args[1], &ipart) != 0.0 )
return_error(e_undefinedresult);
result = pow(args[0], args[1]);
make_real(op - 1, result);
pop(1);
return 0;
}
/* <posnum> ln <real> */
private int
zln(register os_ptr op)
{ float num;
int code = num_params(op, 1, &num);
if ( code < 0 )
return code;
if ( num <= 0.0 )
return_error(e_rangecheck);
make_real(op, log(num));
return 0;
}
/* <posnum> log <real> */
private int
zlog(register os_ptr op)
{ float num;
int code = num_params(op, 1, &num);
if ( code < 0 )
return code;
if ( num <= 0.0 )
return_error(e_rangecheck);
make_real(op, log10(num));
return 0;
}
/* - rand <int> */
private int
zrand(register os_ptr op)
{ /*
* We use an algorithm from CACM 31 no. 10, pp. 1192-1201,
* October 1988. According to a posting by Ed Taft on
* comp.lang.postscript, Level 2 (Adobe) PostScript interpreters
* use this algorithm too:
* x[n+1] = (16807 * x[n]) mod (2^31 - 1)
*/
#define A 16807
#define M 0x7fffffff
#define Q 127773 /* M / A */
#define R 2836 /* M % A */
rand_state = A * (rand_state % Q) - R * (rand_state / Q);
/* Note that rand_state cannot be 0 here. */
if ( rand_state <= 0 ) rand_state += M;
#undef A
#undef M
#undef Q
#undef R
push(1);
make_int(op, rand_state);
return 0;
}
/* <int> srand - */
private int
zsrand(register os_ptr op)
{ long state;
check_type(*op, t_integer);
state = op->value.intval;
#if arch_sizeof_long > 4
/* Trim the state back to 32 bits. */
state = (int)state;
#endif
/*
* The following somewhat bizarre adjustments are according to
* public information from Adobe describing their implementation.
*/
if ( state < 1 )
state = -(state % 0x7ffffffe) + 1;
else if ( state > 0x7ffffffe )
state = 0x7ffffffe;
rand_state = state;
pop(1);
return 0;
}
/* - rrand <int> */
private int
zrrand(register os_ptr op)
{ push(1);
make_int(op, rand_state);
return 0;
}
/* ------ Initialization procedure ------ */
BEGIN_OP_DEFS(zmath_op_defs) {
{"1arccos", zarccos}, /* extension */
{"1arcsin", zarcsin}, /* extension */
{"2atan", zatan},
{"1cos", zcos},
{"2exp", zexp},
{"1ln", zln},
{"1log", zlog},
{"0rand", zrand},
{"0rrand", zrrand},
{"1sin", zsin},
{"1sqrt", zsqrt},
{"1srand", zsrand},
END_OP_DEFS(zmath_init) }
|