1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
|
/* Copyright (C) 1990, 1993, 1994, 1996 Aladdin Enterprises. All rights reserved.
This file is part of GNU Ghostscript.
GNU Ghostscript is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to
anyone for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing. Refer to
the GNU General Public License for full details.
Everyone is granted permission to copy, modify and redistribute GNU
Ghostscript, but only under the conditions described in the GNU General
Public License. A copy of this license is supposed to have been given to
you along with GNU Ghostscript so you can know your rights and
responsibilities. It should be in a file named COPYING. Among other
things, the copyright notice and this notice must be preserved on all
copies.
Aladdin Enterprises is not affiliated with the Free Software Foundation or
the GNU Project. GNU Ghostscript, as distributed by Aladdin Enterprises,
does not depend on any other GNU software.
*/
#ifndef gxarith_INCLUDED
# define gxarith_INCLUDED
/* gxarith.h */
/* Arithmetic macros for Ghostscript library */
/* Define an in-line abs function, good for any signed numeric type. */
#define any_abs(x) ((x) < 0 ? -(x) : (x))
/* Compute M modulo N. Requires N > 0; guarantees 0 <= imod(M,N) < N, */
/* regardless of the whims of the % operator for negative operands. */
int imod(P2(int m, int n));
/* Compute the GCD of two integers. */
int igcd(P2(int x, int y));
/* Test whether an integral value fits in a given number of bits. */
/* This works for all integral types. */
#define fits_in_bits(i, n)\
(sizeof(i) <= sizeof(int) ? fits_in_ubits((i) + (1 << ((n) - 1)), (n) + 1) :\
fits_in_ubits((i) + (1L << ((n) - 1)), (n) + 1))
#define fits_in_ubits(i, n) (((i) >> (n)) == 0)
/*
* There are some floating point operations that can be implemented
* very efficiently on machines that have no floating point hardware,
* assuming IEEE representation and no range overflows.
* We define straightforward versions of them here, and alternate versions
* for no-floating-point machines in gxfarith.h.
*/
/* Test floating point values against constants. */
#define is_fzero(f) ((f) == 0.0)
#define is_fzero2(f1,f2) ((f1) == 0.0 && (f2) == 0.0)
#define is_fneg(f) ((f) < 0.0)
#define is_fge1(f) ((f) >= 1.0)
/* Test whether a floating point value fits in a given number of bits. */
#define f_fits_in_bits(f, n)\
((f) >= -2.0 * (1L << ((n) - 2)) && (f) < 2.0 * (1L << ((n) - 2)))
#define f_fits_in_ubits(f, n)\
((f) >= 0 && (f) < 4.0 * (1L << ((n) - 2)))
/*
* Define a macro for computing log2(n), where n=1,2,4,...,128.
* Because some compilers limit the total size of a statement,
* this macro must only mention n once. The macro should really
* only be used with compile-time constant arguments, but it will work
* even if n is an expression computed at run-time.
*/
#define small_exact_log2(n)\
((uint)(05637042010L >> ((((n) % 11) - 1) * 3)) & 7)
/*
* The following doesn't give rise to a macro, but is used in several
* places in Ghostscript. We observe that if M = 2^n-1 and V < M^2,
* then the quotient Q and remainder R can be computed as:
* Q = V / M = (V + (V >> n) + 1) >> n;
* R = V % M = (V + (V / M)) & M = V - (Q << n) + Q.
*/
#endif /* gxarith_INCLUDED */
|