1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
/* deriv/deriv.c
*
* Copyright (C) 2004, 2007 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <stdlib.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_deriv.h>
static void
central_deriv (const gsl_function * f, double x, double h,
double *result, double *abserr_round, double *abserr_trunc)
{
/* Compute the derivative using the 5-point rule (x-h, x-h/2, x,
x+h/2, x+h). Note that the central point is not used.
Compute the error using the difference between the 5-point and
the 3-point rule (x-h,x,x+h). Again the central point is not
used. */
double fm1 = GSL_FN_EVAL (f, x - h);
double fp1 = GSL_FN_EVAL (f, x + h);
double fmh = GSL_FN_EVAL (f, x - h / 2);
double fph = GSL_FN_EVAL (f, x + h / 2);
double r3 = 0.5 * (fp1 - fm1);
double r5 = (4.0 / 3.0) * (fph - fmh) - (1.0 / 3.0) * r3;
double e3 = (fabs (fp1) + fabs (fm1)) * GSL_DBL_EPSILON;
double e5 = 2.0 * (fabs (fph) + fabs (fmh)) * GSL_DBL_EPSILON + e3;
/* The next term is due to finite precision in x+h = O (eps * x) */
double dy = GSL_MAX (fabs (r3 / h), fabs (r5 / h)) *(fabs (x) / h) * GSL_DBL_EPSILON;
/* The truncation error in the r5 approximation itself is O(h^4).
However, for safety, we estimate the error from r5-r3, which is
O(h^2). By scaling h we will minimise this estimated error, not
the actual truncation error in r5. */
*result = r5 / h;
*abserr_trunc = fabs ((r5 - r3) / h); /* Estimated truncation error O(h^2) */
*abserr_round = fabs (e5 / h) + dy; /* Rounding error (cancellations) */
}
int
gsl_deriv_central (const gsl_function * f, double x, double h,
double *result, double *abserr)
{
double r_0, round, trunc, error;
central_deriv (f, x, h, &r_0, &round, &trunc);
error = round + trunc;
if (round < trunc && (round > 0 && trunc > 0))
{
double r_opt, round_opt, trunc_opt, error_opt;
/* Compute an optimised stepsize to minimize the total error,
using the scaling of the truncation error (O(h^2)) and
rounding error (O(1/h)). */
double h_opt = h * pow (round / (2.0 * trunc), 1.0 / 3.0);
central_deriv (f, x, h_opt, &r_opt, &round_opt, &trunc_opt);
error_opt = round_opt + trunc_opt;
/* Check that the new error is smaller, and that the new derivative
is consistent with the error bounds of the original estimate. */
if (error_opt < error && fabs (r_opt - r_0) < 4.0 * error)
{
r_0 = r_opt;
error = error_opt;
}
}
*result = r_0;
*abserr = error;
return GSL_SUCCESS;
}
static void
forward_deriv (const gsl_function * f, double x, double h,
double *result, double *abserr_round, double *abserr_trunc)
{
/* Compute the derivative using the 4-point rule (x+h/4, x+h/2,
x+3h/4, x+h).
Compute the error using the difference between the 4-point and
the 2-point rule (x+h/2,x+h). */
double f1 = GSL_FN_EVAL (f, x + h / 4.0);
double f2 = GSL_FN_EVAL (f, x + h / 2.0);
double f3 = GSL_FN_EVAL (f, x + (3.0 / 4.0) * h);
double f4 = GSL_FN_EVAL (f, x + h);
double r2 = 2.0*(f4 - f2);
double r4 = (22.0 / 3.0) * (f4 - f3) - (62.0 / 3.0) * (f3 - f2) +
(52.0 / 3.0) * (f2 - f1);
/* Estimate the rounding error for r4 */
double e4 = 2 * 20.67 * (fabs (f4) + fabs (f3) + fabs (f2) + fabs (f1)) * GSL_DBL_EPSILON;
/* The next term is due to finite precision in x+h = O (eps * x) */
double dy = GSL_MAX (fabs (r2 / h), fabs (r4 / h)) * fabs (x / h) * GSL_DBL_EPSILON;
/* The truncation error in the r4 approximation itself is O(h^3).
However, for safety, we estimate the error from r4-r2, which is
O(h). By scaling h we will minimise this estimated error, not
the actual truncation error in r4. */
*result = r4 / h;
*abserr_trunc = fabs ((r4 - r2) / h); /* Estimated truncation error O(h) */
*abserr_round = fabs (e4 / h) + dy;
}
int
gsl_deriv_forward (const gsl_function * f, double x, double h,
double *result, double *abserr)
{
double r_0, round, trunc, error;
forward_deriv (f, x, h, &r_0, &round, &trunc);
error = round + trunc;
if (round < trunc && (round > 0 && trunc > 0))
{
double r_opt, round_opt, trunc_opt, error_opt;
/* Compute an optimised stepsize to minimize the total error,
using the scaling of the estimated truncation error (O(h)) and
rounding error (O(1/h)). */
double h_opt = h * pow (round / (trunc), 1.0 / 2.0);
forward_deriv (f, x, h_opt, &r_opt, &round_opt, &trunc_opt);
error_opt = round_opt + trunc_opt;
/* Check that the new error is smaller, and that the new derivative
is consistent with the error bounds of the original estimate. */
if (error_opt < error && fabs (r_opt - r_0) < 4.0 * error)
{
r_0 = r_opt;
error = error_opt;
}
}
*result = r_0;
*abserr = error;
return GSL_SUCCESS;
}
int
gsl_deriv_backward (const gsl_function * f, double x, double h,
double *result, double *abserr)
{
return gsl_deriv_forward (f, x, -h, result, abserr);
}
|